Медицинской радиологии (лучевой диагностике) немногим более 100 лет. За этот исторически короткий срок она вписала в летопись развития науки немало ярких страниц - от открытия В.К.Рентгена (1895 год) до стремительной компьютерной обработки медицинских лучевых изображении.
У истоков отечественной рентгенорадиологии стояли М.К.Неменов, Е.С.Лондон, Д.Г.Рохлин, Д.С.Линденбратен -выдающиеся организаторы науки и практического здравоохранения. Большой вклад в развтие лучевой диагностики внесли такие яркие личности как С.А.Рейнберг, Г.А.Зедгенизде, В.Я.Дьяченко, Ю.Н.Соколов, Л.Д.Линденбратен и др.
Основной целью дисциплины является изучение теоретических и практических вопросов общей лучевой диагностики (рентгенологической, радионуклвдной,
ультразвуковой, компьютерной томографии, магнитно-резонансной томографии и др.), необходимых в дальнейшем для успешного усвоения студентами клинических дисциплин.
Сегодня лучевая диагностика с учетом клинико-лабораторных данных позволяет в 80-85% распознать заболевание.
Данное руководство по лучевой диагностике составлена в соответствии с Государственным образовательным стандартом (2000 г) и Учебной программой, утвержденной ВУНМЦ (1997).
Сегодня наиболее распространенным методом лучевой диагностики является традиционное рентгенологическое исследование. Поэтому при изучении рентгенологии основное внимание уделяется методам исследования органов и систем человека (рентгеноскопия, рентгенография, ЭРГ, флюорография и др.), методике анализа рентгенограмм и общей рентгеновской семиотике наиболее часто встречающихся заболевании.
В настоящее время успешно развивается дигитальная (цифровая) рентгенография с высоким качеством изображения. Она отличается быстродействием, возможностью передачи изображе-ния на расстояние, удобством хранения информации на магнитных носителях (диски, ленты). Примером может служить рентгеновская компьютерная томография (РКТ).
Заслуживает внимания ультразвуковой метод исследования (УЗИ). В силу своей простоты, безвредности и эффективности метод становится одним из распространенных.
СОВРЕМЕННОЕ СОСТОЯНИЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ ЛУЧЕВОЙ ДИАГНОСТИКИ
Лучевая диагностика (диагностическая радиология) - самостоятельная отрасль медицины, объединяющая различные методы получения изображения в диагностических целях на основе использования различных видов излучения.
В настоящее время деятельность лучевой диагностики регламентируется следующими нормативными документами:
1. Приказ Минздрава РФ № 132 от 2.08.91 «О совершенствовании службы лучевой диагностики».
2. Приказ Минздрава РФ № 253 от 18.06.96 «О дальнейшем совершенствовании работ по снижению доз облучения при медицинских процедурах»
3. Приказ № 360 от 14.09.2001г. «Об утверждении перечня лучевых методов исследования».
Лучевая диагностика включает:
1. Методы на основе использования рентгеновских лучей.
1). Флюорография
2). Традиционное рентгенологическое исследование
3). РКТ
4). Ангиография
2. Методы на основе использования УЗИ-излучения 1).УЗИ
2). Эхокардиография
3). Допплерография
3. Методы на основе ядерно-магнитного резонанса. 1).МРТ
2). MP – спектроскопия
4. Методы на основе использования РФП (радиофармакологических препаратов):
1). Радионуклидная диагностика
2). Позитронно - эмиссионная томография - ПЭТ
3). Радиоиммунные исследования
5.Методы на основе инфракрасного излучения (термофафия)
6.Интервенционная радиология
Общим для всех методов исследования является использование различных излучений (рентгеновских, гамма лучей, УЗ, радиоволн).
Основными компонентами лучевой диагностики являются: 1) источник излучения, 2) воспринимающие устройство.
Диагностическое изображение обычно представляет собой сочетание различных оттенков сгрого цвета, пропорционально интенсивности излучения, попавшею на воспринимающее устройство.
Картина внутренней структуры исследования объекта может быть:
1) аналоговой (на пленке или экране)
2) цифровой (интенсивность излучения выражается в виде числовых величин).
Все эти методы объединены в общую специальность - лучевая диагностика (медицинская радиология, диагностическая радиология), а врачи - врачи радиологи (за рубежом), а у нас пока неофициально «врач лучевой диагност»,
В РФ термин лучевая диагностика является официальным только для обозначения медицинской специальности (14.00.19), аналогичное название носят и кафедры. В практическом здравоохранении название является условным и объединяет 3 самостоятельных специальности: рентгенология, УЗИ-диагностика и радиология (радионуклидная диагностика и лучевая терапия).
Медицинская термография - метод регистрации естественного теплового (инфракрасного излучения). Главными факторами, определяющими температуру тела, являются: интенсивность кровообращения и интенсивность обменных процессов. Каждая область имеет свой «тепловой рельеф». При помощи специальной аппаратуры (тепловизеров) инфракрасное излучение улавливается и преобразуется в видимое изображение.
Подготовка пациента: отмена лекарств, влияющих на кровообращение и уровень обменных процессов, запрещение курения за 4 часа до обследования. На коже не должно быть мазей, кремов и др.
Гипертермия характерна для воспалительных процессов, злокачественных опухолей, тромбофлебитов; гипотермия наблюдается при ангиоспазмах, расстройствах кровообращения при профессиональных заболеваниях (вибрационная болезнь, нарушение мозгового кровообращения и др.).
Метод прост и безвреден. Однако диагностические возможности метода ограничены.
Одним из современных методов широко распространенным является УЗИ (ультразвуковая биолокация). Метод получил широкое распространение из-за простоты и общедоступности, высокой информативности. При этом используется частота звуковых колебаний от 1 до 20 мегагерц (человек слышит звук в пределах частот от 20 до 20000 герц). Пучок ультразвуковых колебаний направляется на исследуемую область, который частично или полностью отражается от всех поверхностей и включений, различающихся по проводимости звука. Отраженные волны улавливаются датчиком, обрабатываются электронным устройством и преобразуются в одно (эхография) или двухмерное (сонография) изображение.
На основании различия в звуковой плотности картины принимается то или иное диагностическое решение. По сканограммам можно судить о топографии, форме, величине исследуемого органа, а также патологических изменениях в нем. Будучи безвредным для организма и обслуживающего персонала метод нашел широкое применение в акушерско-гинекологической практике, при исследовании печени и желчных путей, органов забрюшинного пространства и других органов и систем.
Бурно развиваются радионуклидные методы изображения различных органов и тканей человека. Сущность метода - в организм вводятся радионуклиды или меченные ими соединения (РФП), которые избирательно накапливаются в соответствующих органах. При этом радионуклиды испускают гаммакванты, которые улавливаются датчиками, а затем регистрируются специальными приборами (сканерами, гаммакамерой и др.), что позволяет судить о положении, форме, величине органа, распределении препарата, быстроте его выведения и т.д.
В рамках лучевой диагностики складывается новое перспективное направление - радиологическая биохимия (радиоимун-ный метод). При этом изучаются гормоны, ферменты, опухолевые маркеры, лекарственные препараты и др. Сегодня in vitro определяют более 400 биологически активных веществ;. Успешно развиваются способы активационного анализа - определение концентрации стабильных нуклидов в биологических образцах или в организме в целом (облученных быстрыми нейтронами).
Ведущая роль в получении изображения органов и систем человека принадлежит рентгенологическому исследованию.
С открытием рентгеновских лучей (1895 год) осуществилась вековая мечта врача — заглянуть внутрь живого организма, изучить его строение, работу, распознать заболевание.
В настоящее время существует большое количество методов рентгенологического исследования (бесконтрастных и с использованием искусственного контрастирования), позволяющих исследовать практически все органы и системы человека.
В последнее время в практику все шире внедряются цифровые технологии получения изображения (малодозовая цифровая рентгенография), плоские панели - детекторы для РЭОП, детекторы рентгеновского изображения на основе аморфного кремния и др.).
Преимущества цифровых технологий в рентгенологии: снижение дозы облучения в 50-100 раз, высокая разрешающая способность (визуализируются объекты величиной 0,3 мм), исключается пленочная технология, увеличивается пропускная способность кабинета, формируется электронный архив с быстрым доступом, возможность передачи изображения на расстояние.
С рентгенологией тесно связана интервенционная радиология - сочетание в одной процедуре диагностических и лечебных мероприятий.
Основные направления: 1) рентгеноваскулярные вмешательства (расширение суженных артерий, закупорка сосудов при гемангиомах, протезирование сосудов, остановка кровотечений, удаление инородных тел, подведение лекарственных веществ к опухоли), 2) экстравазальные вмешательства (катетеризация бронхиального дерева, пункция легкого, средостения, декомпрессия при обтурационной желтухе, введение препаратов, растворяющих камни и др.).
Компьютерная томография. До недавнего времени казалось, что методический арсенал рентгенологии исчерпан. Однако родилась компьютерная томография (КТ), совершившая революционный переворот в рентгенодиагностике. Спустя почти 80 лет после Нобелевской премии, полученной Рентгеном (1901) в 1979 году этой же премии удостоились Хаунсфильд и Кормак на том же участке научного фронта - за создание компьютерного томографа. Нобелевская премия за создание прибора! Явление довольно редкое в науке. А все дело в том, что возможности метода вполне сравнимы с революционным открытием Рентгена.
Недостаток рентгенологического метода - плоскостное изображение и суммарный эффект. При КТ образ объекта математически воссоздается по бесчисленному набору его проекций. Таким объектом является тонкий срез. При этом он просвечивается со всех сторон и изображение его регистрируется ог-ромным количеством высокочувствительных датчиков (несколько сотен). Полученная информация обрабатывается на ЭВМ. Детекторы КТ очень чувствительны. Они улавливают разницу в плотности структур менее одного процента (при обычной рентгенографии - 15-20%). Отсюда, можно получить на снимках изображение различных структур головного мозга, печени, поджелудочной железы и ряда других органов.
Преимущества КТ: 1) высокая разрешающая способность, 2) исследование тончайшего среза - 3-5 мм, 3) возможность количественной оценки плотности от -1000 до + 1000 единиц Хаунсфильда.
В настоящее время появились спиральные компьютерные томографы, обеспечивающие обследование всего тела и получение томограмм при обычном режиме работы за одну секунду и временем реконструкции изображения от 3 до 4 секунд. За создание этих аппаратов ученые были удостоены Нобелевской премии. Появились и передвижные КТ.
Магнитно-резонансная томография основана на ядерно-магнитном резонансе. В отличие от рентгеновского аппарата магнитный томограф не «просвечивает» тело лучами, а заставляет сами органы посылать радиосигналы, которые ЭВМ обрабатывая, формирует изображение.
Принципы работы. Объект помещается в постоянное магнитное поле, которое создается уникальным электромагнитом в виде 4-х огромных колец соединенных вместе. На кушетке пациент вдвигается в этот туннель. Включается мощное постоянное электромагнитное поле. При этом протоны атомов водорода, содержащихся в тканях, ориентируются строго по ходу силовых линий (в обычных условиях они ориентированы в пространстве беспорядочно). Затем включается высокочастотное электромагнитное поле. Теперь ядра, возвращаясь в исходное состояние (положение), испускают крохотные радиосигналы. Это и гсть эффект ЯМР. Компьютер регистрирует эти сигналы и распределение протонов, формирует изображение на телеэкране.
Радиосигналы неодинаковы и зависят от расположения атома и его окружения. Атомы болезненных участков испускают радиосигнал, отличающийся от излучений соседних здоровых тканей. Разрешающая способность аппаратов чрезвычайно велика. Например, хорошо видны отдельные структуры головного мозга (ствол, полушарие, серое, белое вещество, желудочковая система и т.д.). Преимущества МРТ перед РКТ:
1) MP-томография не связана с опасностью повреждения тканей, в отличие от рентгенологического исследования.
2) Сканирование радиоволнами позволяет менять расположение изучаемого сечения в тел»; без изменения положения пациента.
3) Изображение не только поперечное, но и в любых других сечениях.
4) Разрешающая способность выше, чем при КТ.
Препятствием к МР-томографии являются металлические тела (клипсы после операции, водители сердечного ритма, электронейростимуляторы)
Современные тенденции развития лучевой диагностики
1. Совершенствование методов на основе компьютерных технологий
2. Расширение сферы применения новых высокотехнологических методов -УЗИ, МРТ, РКТ, ПЭТ.
4. Замена трудоемких и инвазивных методов менее опасными.
5. Максимальное сокращение лучевых нагрузок на пациентов и персонал.
Всестороннее развитие интервенционной радиологии, интеграция с другими медицинскими специальностями.
Первое направление - прорыв в области компьютерных технологий, что позволило создать широкий спектр аппаратов для цифровой дигитальной рентгенографии, УЗИ, МРТ до использования трехмерных изображений.
Требования, предъявляемые к радионуклидным лабораториям:
Одна лаборатория - на 200-300 тысяч населения. Преимущественно ее следует размещать в терапевтических клиниках.
1. Необходимо размещать лабораторию в отдельном здании, построенному по типовому проекту с охранной санитарной зоной вокруг. На территории последней нельзя строить детские учреждения и пищеблоки.
2. Радионуклидная лаборатория должна иметь определенный набор помещений (хранилище РФП, фасовочная, генераторная, моечная, процедурная, санпропускник).
3. Предусмотрена специальная вентиляция (пятикратная смена воздуха при использовании радиоактивных газов), канализация с рядом отстойников, в которых выдерживаются отходы не менее десяти периодов полураспада.
4. Должна проводиться ежедневная влажная уборка помещений.
В ближайшие годы, а иногда и сегодня, основным местом работы врача станет персональный компьютер, на экран которого будет выводиться информация с данными электронной истории болезни.
Второе направление связано с широким распространением КТ, МРТ, ПЭТ, разработка все новых направлений их использования. Не от простого к сложному, а выбор наиболее эффективных методик. Например, выявление опухолей, метастазов головного и спинного мозга - МРТ, метастазов - ПЭТ; почечной колики - спиральная КТ.
Третье направление - повсеместное устранение инвазивных методов и методов связанных с большой лучевой нагрузкой. В связи с этим, уже сегодня практически исчезли миелография, пневмомедиасти-нография, в/в холеграфия и др. Сокращаются показания к ангиографии.
Четвертое направление - максимальное снижение доз ионизирующего излучения за счет: I) замены рентгеновских излучателей МРТ, УЗИ , например при исследовании головного и спинного мозга, желчных путей и др. Но делать это надо обдуманно, чтобы не случилась ситуация подобно рентгенологическому исследованию ЖКТ, где все переложено на ФГС, хотя при эндофитных раках больше информации при рентгенологическом исследовании. Сегодня и УЗИ не может заменить маммографию. 2) максимальное снижение доз при проведении самих рентгенологических исследований за счет исключения дублирования снимков, улучшения техники, пленки и др.
Пятое направление - бурное развитие интервенционной радиологии и широкое привлечение лучевых диагностов к этой работе (ангиография, пункция абсцессов, опухолей и др.).
Особенности отдельных методов диагностики на современном этапе
В традиционной рентгенологии принципиально изменилась компоновка рентгеновских аппаратов - установка на три рабочих места (снимки, просвечивание и томография) заменяются на телеуправляемое одно рабочее место. Увеличилось число специальных аппаратов (маммографы, для ангиографии, стоматологии, палатные и др.). Широкое распространение получили устройства для цифровой рентгенографии, УРИ, субтракционной дигитальной ангиографии, фотостимулирующие кассеты. Возникла и развивается цифровая и компьютерная радиология, что приводит к сокращению времени обследования, устранение фотолабораторного процесса, созданию компактных цифровых архивов, развитию телерадиологии, созданию внутри - и межбольничных радиологических сетей.
УЗИ - технологии обогатились новыми программами цифровой обработки эхосигнала, интенсивно развивается допплерография оценки кровотока. УЗИ стали основными при исследовании живота, сердца, таза, мягких тканей конечностей, возрастает значение метода в исследовании щитовидной железы, молочных желез, внутриполостных исследования.
В области ангиографии интенсивно развиваются интервенционные технологии (балонная дилятация, установка стентов, ангиопластика и др.)
В РКТ - доминирующее значение приобретает спиральное сканирование, многослойное КТ, КТ- ангиография.
МРТ обогатилась установками открытого типа с напряженностью поля 0,3 - 0,5 Т и с высокой напряженностью (1,7-3 ОТ), функциональными методиками исследования головного мозга.
В радионуклидной диагностике появился ряд новых РФП, утвердился в клинике ПЭТ (онкология и кардиология).
Формируется телемедицина. Ее задача - электронное архивирование и передача данных о пациентах на расстояние.
Структура лучевых методов исследования меняется. Традиционные рентгенологические исследования, проверочная и диагностическая флюорография, УЗИ являются методами первичной диагностики и в основном ориентированы на исследование органов грудной и брюшной полости, костно-суставной системы. К уточняющим методам относятся МРТ, КТ, радионуклидное исследование, особенно при исследовании костей, зубочелюстной области, головы и спинного мозга.
В настоящее время разработано свыше 400 соединений различной химической природы. Метод на порядок чувствительнее лабораторных биохимических исследований. Сегодня радиоимунный анализ широко используется в эндокринологии (диагностика сахарного диабета), в онкологии (поиск раковых маркеров), в кардиологии (диагностика инфаркта миокарда), в педиатрии (при нарушении развития ребенка), в акушерстве и гинекологии (бесплодие, нарушение развития плода), в аллергологии, в токсикологии и др.
В промышленно развитых странах сейчас основной акцент делается на организацию в крупных городах центров позитронной эмиссионной томографии (ПЭТ), включающей в свой состав кроме позитронно-эмиссионного томографа, еще и малогабаритный циклотрон для производства на месте позитронно-излучающих ультракороткоживущих радионуклидов. Где нет малогабаритных циклотронов изотоп (F-18 с периодом полураспада около 2 часов) получают из своих региональных центров по производству радионуклидов или используют генераторы (Rb-82, Ga-68, Cu-62).
В настоящее время радионуклидные методы исследования используют и с профилактической целью для выявления скрыто протекающих заболеваний. Так, любая головная боль требует исследования мозга с пертехнетатом-Тс-99ш. Такого рода скрининг позволяет исключить опухоль и очаги кровоизлияния. Уменьшенная почка, обнаруженная в детстве при сцинтиграфии, должна быть удалена с целью профилактики злокачественной гипертонии. Капелька крови, взятая из пяточки ребенка, позволяет установить количество гормонов щитовидной железы.
Методы радионуклидных исследований делятся на: а) исследование живого человека; б) исследование крови, секретов, экскретов и прочих биологических проб.
К методам in vivo относятся:
1. Радиометрия (всего тела или части его) - определение активности части тела или органа. Активность регистрируется в виде цифр. Примером может служить исследование щитовидной железы, ее активности.
2. Радиография (гаммахронография) - на радиографе или гаммакамере определяется динамика радиоактивности в виде кривых (гепаторадиография, радиоренография).
3. Гамматопография (на сканере или гаммакамере) — распределение активности в органе, что позволяет судить о положении, форме, размерах, равномерности накопления препарата.
4. Радиоимунный анализ (радиоконкурентный) - в пробирке определяются гормоны, ферменты, лекарственные средства и прочее. При этом РФП вводится в пробирку, например с плазмой крови пациента. В основе метода - конкуренция между веществом меченым радионуклидом и его аналогом в пробирке за комплексирование (соединение) со специфическим антителом. Антигеном является биохимическое вещество, которое следует определить (гормон, фермент, лекарственное вещество). Для анализа необходимо иметь: 1) исследуемое вещество (гормон, фермент); 2) меченый его аналог: меткой обычно служит 1-125 с периодом полураспада 60 дней или тритий с периодом полураспада 12 лет; 3) специфическую воспринимающую систему, являющуюся предметом «конкуренции» между искомым веществом и его меченым аналогом (антитело); 4) систему разделения, отделяющую связанное радиоактивное вещество от несвязанного (активированный уголь, ионообменные смолы и др.).
ЛУЧЕВОЕ ИССЛЕДОВАНИЕ ЛЕГКИХ
Легкие - один из самых частых объектов лучевого исследования. О важной роли рентгенологического исследования в изучении морфологии органов дыхания и распознавании различных заболеваний свидетельствует тот факт, что принятые классификации многих патологических процессов основаны на рентгенологических данных (пневмонии, туберкулез, рак легкого, саркоидоз и др.). Часто скрыто протекающие заболевания, такие как туберкулез, рак и др. выявляются при проверочных флюорографических обследованиях. С появлением компьютерной томографии значение рентгенологического исследования легких возросло. Важное место в исследовании легочного кровотока принадлежит радионуклидному исследованию. Показания к лучевому исследованию легких весьма широки (кашель, выделение мокроты, одышка, повышение температуры и др.).
Лучевое исследование позволяет диагностировать заболевание, уточнить локализацию и распространенность процесса, следить за динамикой, контролировать выздоровление, обнаружить осложнения.
Ведущая роль в исследовании легких принадлежит рентгенологическому исследованию. Среди методов исследования следует отметить рентгеноскопию и рентгенографию, позволяющие оценить как морфологические, так и функциональные изменения. Методики просты и не обременительны для больного, высоко информативны, общедоступны. Обычно выполняются обзорные снимки в прямой и боковой проекциях, прицельные снимки, суперэкспонированные (сверхжесткие, иногда заменяющие томографию). Для выявления скопления жидкости в плевральной полости выполняются снимки в латеропозиции на больном боку. С целью уточнения деталей (характер контуров, гомогенность тени, состояние окружающих тканей и пр.), выполняется томография. Для массового исследования органов грудной полости прибегают к флюорографии. Из контрастных методов следует назвать бронхографию (для выявления бронхоэктазии), ангиопульмонографию (для определения распространенности процесса, например при раке легкого, для выявления тромбоэмболии ветвей легочной артерии).
Рентгеноанатомия. Анализ рентгенологических данных органов грудной полости проводится в определенной последовательности. Оценивается:
1) качество снимка (правильность установки пациента, степень экспонирования пленки, объем захвата и пр.),
2) состояние грудной клетки в целом (форма, величина, симметричность легочных полей, положение органов средостения),
4) мягких тканей (кожная полоска над ключицами, тень и грудиноключичнососковых мышц, молочных желез),
5) состояние диафрагмы (положение, форма, контуры, синусы),
6) состояние корней легких (положение, форма, ширина, состояние наружного кошура, структура),
7) состояние легочных полей (размеры, симметричность, легочный рисунок, прозрачность),
8) состояние органов средостения. Необходимо изучить бронхолегочные сегменты (название, локализация).
Рентгеносемиотика заболеваний легких чрезвычайно разнообразна. Однако это многообразие можно свести к нескольким группам признаков.
1. Морфологические признаки:
1) затемнение
2) просветление
3) сочетание затемнения и просветления
4) изменения легочного рисунка
5) патология корней
2. Функциональные признаки:
1) изменение прозрачности легочной ткани в фазе вдоха и выдоха
2) подвижность диафрагмы при дыхании
3) парадоксальные движения диафрагмы
4) перемещение срединной тени в фазе вдоха и выдоха Обнаружив патологические изменения, следует решить каким заболеванием они обусловлены. Сделать это «с первого взгляда» обычно невозможно, если нет патогномоничных симптомов (игла, значок и т.д.). Задача облегчается, если выделить рентгенологический синдром. Различают следующие синдромы:
1.Синдром тотального или субтотального затемнения:
2) внелегочные затемнения (экссудативный плеврит, шварты). В основу разграничения положены два признака: структура затемнения и положение органов средостения.
Например, тень однородная, средостение смещено в сторону поражения - ателектаз; тень однородная, сердце смещено в противоположную сторону - экссудативный плеврит.
2.Синдром ограниченных затемнений:
1) внутрилегочные (доля, сегмент, субсегмент),
2) внелегочные (плевральный выпот, изменения ребер и органов средостения и др.).
Ограниченные затемнения - самый трудный путь диагностической расшифровки («ох, не легкие - эти легкие!»). Они встречаются при пневмониях, туберкулезе, раке, ателектазе, тромбоэмболии ветвей легочной артерии и др. Следовательно, обнаруженную тень следует оценить с точки зрения положения, формы, размеров, характера контуров, интенсивности и гомогенности пр.
Синдром округлого (шаровидного) затемнения - в виде одного или нескольких фокусов, имеющих более или менее округлую форму размером больше одного см. Они могут быть однородными и неоднородными (за счет распада и обызвествлений). Тень округлой формы должна определяться обязательно в двух проекциях.
По локализации округлые тени могут быть:
1) внутрилегочными (воспалительный инфильтрат, опухоль, кисты и др.) и
2) внелегочные, исходящие из диафрагмы, грудной стенки, средостения.
Сегодня насчитывается около 200 заболеваний,, обусловливающих круглую тень в легких. Большинство из них встречается редко.
Поэтому, чаще всего приходится проводить дифференциальную диагностику со следующими заболеваниями:
1) периферический рак легкого,
2) туберкулома,
3) доброкачественная опухоль,
4) ретенционная и паразитарная кисты,
5) абсцесс легкого и фокусы хронической пневмонии,
6) солидарный метастаз. На долю этих заболеваний приходится до 95% округлых теней.
При анализе круглой тени следует учитывать локализацию, структуру, характер контуров, состояние легочной ткани вокруг, наличие или отсутствие «дорожки» к корню и т.д.
4.0чаговые (очаговоподобные) затемнения - это округлые или неправильной формы образования диаметром от 3 мм до 1,5 см. Природа их разнообразна (воспалительная, опухолевая, рубцовые изменения, участки кровоизлияний, ателектазы и др.). Они могут быть одиночными, множественными и диссеминированными и различаться по величине, локализации, интенсивности, характеру контуров, изменению легочного рисунка. Так, при локализации очагов в облаете верхушки легкого, подключичного пространства следует думать о туберкулезе. Неровные контуры обычно характеризуют воспалительные процессы, периферический рак, фокусы хронической пневмонии и др. Интенсивность очагов обычно сравнивается с легочным рисунком, ребром, срединной тенью. В дифференциальной диагностике учитывается и динамика (увеличение или уменьшение количества очагов).
Очаговые тени чаще всего встречаются при туберкулезе, саркоидозе, пневмонии, метастазах злокачественных опухолей, пневмокониозе, пневмосклерозе и др.
5.Синдром диссеминации - распространение в легких множественных очаговых теней. Сегодня насчитывается свыше 150 заболеваний, которые могут обусловить этот синдром. Основными разграничительными критериями являются:
1) размеры очагов - милиарные (1-2 мм), мелкие (3-4 мм), средние (5-8 мм) и крупные (9-12 мм),
2) клинические проявления,
3) преимущественная локализация,
4) динамика.
Милиарная диссеминация характерна для острого диссеминированного (милиарного) туберкулеза, узлового пневмокониоза, саркоидоза, канцероматоза, гемосидероза, гистиоцитоза и др.
При оценке рентгенологической картины следует учитывать локализацию, равномерность диссеминации, состояние легочного рисунка и др.
Диссеминация с размером очагов свыше 5 мм сводит диагностическую задачу к разграничению очаговой пневмонии, опухолевой диссеминации, пневмосклерозу.
Диагностические ошибки при синдроме диссеминации довольно часты и составляют 70-80%, в связи с чем, адекватная терапия запаздывает. В настоящее время диссеминированные процессы делят на: 1) инфекционные (туберкулез, микозы, паразитарные заболевания, ВИЧ-инфекция, респираторный дистрес синдром), 2) неинфекционные (пневмокониозы, аллергические васкулиты, лекарственные изменения, радиационные последствия, посттрансплантационные изменения и пр.).
Около половины всех диссеминированных заболеваний легких относятся к процессам с неустановленной этиологией. Так например, идеопатический фиброзирующий альвеолит, саркоидоз, гистиоцитоз, идеопатический гемосидероз, васкулиты. При некоторых системных заболеваниях также наблюдается синдром диссеминации (ревматоидные болезни, цирроз печени, гемолитические анемии, болезни сердца, почек и др.).
В последнее время в дифференциальной диагностике диссеминированных процессов в легких большую помощь оказывает рентгеновская компьютерная томография (РКТ)
6. Синдром просветлений. Просветления в легких делятся на ограниченные (полостные образования - кольцевидные тени) и диффузные. Диффузные в свою очередь подразделяются на бесструктурные (пневмоторакс) и структурные (эмфизема легких).
Синдром кольцевидной тени (просветления) проявляется в виде замкнутого кольца (в двух проекциях). При обнаружении кольцевидного просветления необходимо установить локализацию, толщину стенок, состояние легочной ткани вокруг. Отсюда, различают:
1) тонкостенные полости к которым относятся бронхиальные кисты, кистевидные бронхоэктазы, постпневмонические (ложные) кисты, санированные туберкулезные каверны, эмфизематозные буллы, полости при стафилококковой пневмонии;
7. Патология легочного рисунка. Легочный рисунок образован разветвлениями легочной артерии и представляется линейными тенями, располагающимися радиально и не доходящими до реберного края на 1-2 см. Патологически измененный легочный рисунок может быть усиленным и обедненным.
1) Усиление легочного рисунка проявляется в виде грубых дополнительных тяжистых образований, часто беспорядочно располагающихся. Нередко он становится петлистым, ячеистым, хаотичным.
Усиление и обогащение легочного рисунка (на единицу площади легочной ткани приходится увеличение число элементов легочного рисунка) наблюдается при артериальном полнокровии легких, застое в легких, пневмосклерозе. Усиление и деформация легочного рисунка возможно:
а) по мелкоячеистому типу и б) по крупноячеистому (пневмосклероз, бронхоэктазы, кистевидное легкое).
Усиление легочного рисунка может быть ограниченным (пневмофиброз) и диффузный. Последний встречается при фиброзирующих альвеолитах, саркоидозе, туберкулезе, пневмокониозе, гистиоцитозе X, при опухолях (раковый лимфангит), васкулитах, лучевых поражениях и пр.
Обеднение легочного рисунка. При этом на единицу площади легкого приходится меньше элементов легочного рисунка. Обеднение легочного рисунка наблюдается при компенсаторной эмфиземе, недоразвитии артериальной сети, вентильной закупорке бронха, прогрессирующей дистрофии легких (исчезающее легкое) и др.
Исчезновение легочного рисунка наблюдается при ателектазе и пневмотораксе.
8.Патология корней. Различают нормальный корень, инфильтрированный корень, застойные корни, корни с увеличенными лимфоузлами и фиброз неизмененные корни.
Нормальный корень располагается от 2 до 4 ребра, имеет четкий наружный контур, структура неоднородная, ширина не превышает 1,5 см.
В основе дифференциальной диагностики патологически измененных корней учитываются следующие моменты:
1) одно или двусторонность поражения,
2) изменения в легких,
3) клиническая картина (возраст, СОЭ, изменения в крови и др.).
Инфильтрированный корень представляется расширенным, бесструктурным с нечетким наружным контуром. Встречается при воспалительных заболеваниях легких и опухолях.
Точно также выглядят застойные корни. Однако, при этом процесс двухсторонний и обычно имеются изменения со стороны сердца.
Корни с увеличенными лимфоузлами бесструктурны, расширены, с четкой наружной границей. Иногда имеет место полицикличность, симптом «кулис». Встречаются при системных заболеваниях крови, метастазах злокачественных опухолей, саркоидозе, туберкулезе и др.
Фиброзно измененный корень структурен, обычно смещен, часто имеет обызвествленные лимфатические узлы и, как правило, наблюдаются фиброзные изменения в легких.
9. Сочетание затемнения и просветления - синдром, который наблюдается при наличии полости распада гнойного, казеозного или опухолевого характера. Чаще всего он встречается, при полостной форме рака легкого, туберкулезной каверне, при распадающемся туберкулезном инфильтрате, абсцессе легкого, нагноившихся кистах, бронхоэктазах и др.
10. Патология бронхов:
1) нарушение бронхиальной проходимости при опухолях, инородных телах. Различают три степени нарушения бронхиальной проходимости (гиповентиляция, вентельная закупорка, ателектаз),
2) бронхоэктазия (цилиндрические, мешотчатые и смешанные бронхоэктазы),
3) деформация бронхов (при пневмосклерозе, туберкулезе и др. заболеваниях).
ЛУЧЕВОЕ ИССЛЕДОВАНИЕ СЕРДЦА И МАГИСТРАЛЬНЫХ СОСУДОВ
Лучевая диагностика заболеваний сердца и крупных сосудов прошла долгий путь своего развития, полный триумфа и драматизма.
Большая диагностическая роль рентгенокардиологии никогда не вызывала сомнений. Но это была ее юность, пора одиночества. В последние 15-20 лет произошла технологическая революция в диагностической радиологии. Так, в 70-ые годы были созданы УЗ-приборы, позволившие заглянуть внутрь полостей сердца, изучить состояние капанного аппарата. Позднее динамическая сцинтиграфия позволила судить о сократимости отдельных сегментов сердца, о характере кровотока. В 80-ые годы в практику кардиологии вошли компьютеризационные способы получения изображения: дигитальная коронаро- и вентрикулография, КТ, МРТ, катетеризация сердца.
В последнее время стало распространяться мнение о том, что традиционное рентгенологическое исследование сердца изжило себя как методика обследования больных кардиологического профиля, так как основными методами исследования сердца является ЭКГ, УЗИ, МРТ. Тем не менее, в оценке легочной гемодинамики, отражающей функциональное состояние миокарда, рентгенологическое исследование сохраняет свои преимущества. Она не только позволяет выявить изменения сосудов малого круга кровообращения, но и составитпредставление о камерах сердца, приведших к этим изменениям.
Таким образом, лучевое исследование сердца и крупных сосудов включает:
неинвгзивные методы (рентгеноскопия и рентгенография, УЗИ, КТ, МРТ)
инвазивные методы (ангиокардиография, вентрикулография, коронарография, аортография и др.)
Радионуклидные методы позволяют судить о гемодинамике. Следовательно, сегодня лучевая диагностика в кардиологии переживает свою зрелость.
Рентгенологическое исследование сердца и магистральных сосудов.
Значение метода. Рентгенологическое исследование является частью общего клинического исследования больного. Цель установить диагноз и характер гемодинамических нарушений (от этого зависит выбор метода лечения - консервативного, оперативного). В связи с применением УРИ в сочетании с катетеризацией сердца и ангиографией открылись широкие перспективы в изучении нарушений кровообращения.
Методики исследования
1) Рентгеноскопия - методика, с которой начинается исследование. Она позволяет составить представление о морфологии и дать функциональную характеристику тени сердца в целом и отдельных ее полостей, а также крупных сосудов.
2) Рентгенография объективизирует морфологические данные, полученные при рентгеноскопии. Ее стандартные проекции:
а) передняя прямая
б) правая передняя косая (45°)
в) левая передняя косая (45°)
г) левая боковая
Признаки косых проекций:
1) Правая косая - треугольная форма сердца, газовый пузырь желудка спереди, по заднему контуру сверху располагается восходящая аорта, левое предсердие, внизу - правое предсердие; по переднему контуру сверху определяется аорта, затем идет конус легочной артерии и, нищ - дуга левого желудочка.
2) Левая косая - форма овальная, желудочный пузырь сзади, между позвоночником и сердцем, хорошо видна бифуркация трахеи и определяются все отделы грудной аорты. Все камеры сердца выходят на контур - сверху предсердия, внизу желудочки.
3) Исследование сердца с контрастированным пищеводом (пищевод в норме располагается вертикально и на значительном протяжении прилежит к дуге левого предсердия, что позволяет ориентироваться о его состоянии). При увеличении левого предсердия наблюдается оттеснение пищевода по дуге большого или малого радиуса.
4) Томография - уточняет морфологические особенности сердца и крупных сосудов.
5) Рентгенокимография, электрокимография - методы функционального исследования сократительной способности миокарда.
6) Рентгенокинематография - киносъемка работы сердца.
7) Катетеризация полостей сердца (определение насыщения крови кислородом, измерение давления, определение минутного и ударного объема сердца).
8) Ангиокардиография с большей точностью определяет анатомические и гемодинамические нарушения при пороках сердца (особенно врожденных).
План изучения данных рентгенологического исследования
1. Изучение скелета грудной клетки (обращается внимание на аномалии развития ребер, позвоночника, искривления последнего, «узуры» ребер при коарктации аорты, признаки эмфиземы легких и др.).
2. Исследование диафрагмы (положение, подвижность, скопление жидкости в синусах).
3. Изучение гемодинамики малого круга кровообращения (степень выбухания конуса легочной артерии, состояние корней легких и легочного рисунка, наличие плевральных линий и линий Керли, очагово - инфильтратавные тени, гемосидероз).
4. Рентгеноморфологическое исследование сердечнососудистой тени
а) положение сердца (косое, вертикальное и горизонтальное).
б) форма сердца (овальная, митральная, треугольная, аортальная)
в) размеры сердца. Справа на 1-1,5 см от края позвоночника, слева - на 1-1,5 см не доходя до срединно-ключичной линии. О верхней границе судим по так называемой талии сердца.
5. Определение функциональных особенностей сердца и крупных сосудов (пульсация, симптом «коромысла», систолические смещения пищевода и др.).
Приобретенные пороки сердца
Актуальность. Внедрение в хирургическую практику оперативного лечения приобретенных пороков потребовало от рентгенологов их уточнения, (стеноз, недостаточность, их преобладание, характер нарушения гемодинамики).
Причины: практически все приобретенные пороки - следствие ревматизма, редко-септического эндокардита; коллагенозы, травма, атеросклероз, сифилис также могут привести к пороку сердца.
Недостаточность митрального клапана встречается чаще, чем стеноз. При этом происходит сморщивание створок клапана. Нарушение гемодинамики связано с отсутствием периода замкнутых клапанов. Часть крови во время систолы желудочков возвращается в левое предсердие. Последнее расширяется. Во время диастолы в левый желудочек возвращается большее количество крови, в связи с чем последнему приходится работать в усиленном режиме и он гипертрофируется. При значительной степени недостаточности левое предсердие резко расширяется, стенка его истончается иногда до тонкого листка, через который просвечивает кровь.
Нарушение внутрисердечной гемодинамики при этом пороке наблюдается при забросе 20-30мл крови в левое предсердие. Долгое время значительных изменений нарушения кровообращения в малом круге не наблюдается. Застой в легких возникает лишь при далеко зашедших стадиях - при недостаточности левого желудочка.
Рентгеновская семиотика.
Форма сердца митральная (талия сглажена или выбухает). Основной признак-увеличение левого предсердия иногда с выходом на правый контур в виде дополнительной третьей дуги (симптом «перекреста»). Степень увеличения левого предсердия определяется в первом косом положении по отношению к позвоночнику (1-III).
Контрастированный пищевод отклоняется по дуге большого радиуса (более 6-7см). Имеет место расширение угла бифуркации трахеи (до 180), сужение просвета правого главного бронха. Третья дуга по левому контуру преобладает над второй. Аорта нормальных размеров, хорошо заполняется. Из рентгенофункциональных симптомов обращает на себя внимание симптом «коромысла» (систолической экспансии), систолическое смещение пищевода, симптом Реслера (передаточная пульсация правого корня.
После оперативного вмешательства все изменения ликвидируются.
Стеноз левого митрального клапана (сращение створок).
Гемодинамические нарушения наблюдаются с уменьшением митрального отверстия более чем на половину (около одного кв. см.). В норме митральное отверстие 4-6 кв. см., давление в полости левого предсердия 10 мм рт.ст. При стенозе давление повышается в 1,5-2 раза. Сужение митрального отверстия препятствует изгнанию крови из левого предсердия в левый желудочек, давление в котором повышается до 15-25мм рт.ст., что затрудняет отток крови из малого круга кровообращения. Возрастает давление в легочной артерии (это пассивная гипертензия). Позже наблюдается активная гипертензия в результате раздражения барорецепторов эндокарда левого предсердия и устья легочных вен. В результате этого развивается рефлекторный спазм артериол и более крупных артерий - рефлекс Китаева. Это второй барьер на пути тока крови (первый - сужение митрального клапана). При этом возрастает нагрузка на правый желудочек. Длительный спазм артерий приводит к кардиогенному пневмофиброзу.
Клиника. Слабость, одышка, кашель, кровохарканье. Рентгеносемиотика. Самым ранним и характерным признаком является нарушение гемодинамики малого круга кровообращения - застой в легких, (расширение корней, усиление легочного рисунка, линии Керли, перегородочные линии, гемосидероз).
Рентгеновская симптоматика. Сердце имеет митральную конфигурацию за счет резкого выбухания конуса легочной артерии (вторая дуга преобладает над третьей). Имеет место гипертрофия левого предсердия. Коитрастированный пищевод отклоняется по дуге малого радиуса. Отмечается смещение вверх главных бронхов (больше левого), увеличение угла бифуркации трахеи. Правый желудочек увеличен, левый - как правило, небольших размеров. Аорта гипопластична. Сокращения сердца спокойные. Часто наблюдается обызвествление клапанов. При катетеризации отмечается повышение давления (в 1-2 раза выше нормы).
Недостаточность клапанов аорты
Нарушение гемодинамики при этом пороке сердца сводится к неполному смыканию створок клапанов аорты, что во время диастолы приводит к возврату в левый желудочек от 5 до 50% крови. Результатом является расширение левого желудочка за гипертрофии. Одновременно диффузно расширяется и аорта.
В клинической картине отмечаются сердцебиения, боли в сердце, обмороки и головокружения. Разница в систолическом и диастолическом давлениях велика (систолическое давление 160 мм рт ст, диастолическое - низкое, иногда доходит до 0). Наблюдается симптом «пляски» каротид, симптом Мюсси, бледность кожных покровов.
Рентгеносемиотика. Наблюдается аортальная конфигурация сердца (глубокая подчеркнутая талия), увеличение левого желудочка, закругление его верхушки. Равномерно расширяются и все отделы грудной аорты. Из ренттенофункциональных признаков обращает на себя внимание увеличение амплитуды сердечных сокращений и усиление пульсации аорты (пульс celer et altus). Степень недостаточности клапанов аорты определяется при ангиографии (1 ст. - узкая струйка, в 4-ой - в диастолу коитрастируется вся полость левого желудочка).
Стеноз аортального отверстия (сужение более 0,5-1 см2, в норме 3 см2).
Нарушение гемодинамики сводится к затрудненному оттоку крови из левого желудочка в аорту, что ведет к удлинению систолы и повышению давления в полости левого желудочка. Последний резко гипертрофируется. При декомпенсации возникает застой в левом предсердии, а затем и в легких, далее - в большом круге кровообращения.
В клинике обращают внимание на себя боли в сердце, головокружения, обмороки. Наблюдается систолическое дрожание, пульс parvus et tardus. Порок долгое время остается компенсированным.
Ренгеносемиотика. Гипертрофия левого желудочка, закругление и удлинение его дуги, аортальная конфигурация, постстенотическое расширение аорты (её восходящей части). Сердечные сокращения напряженные и отражают затрудненный выброс крови. Довольно часты обызвествления клапанов аорты. При декомпенсации развивается митрализация сердца (сглаживается талия за счет увеличения левого предсердия). При ангиографии определяется сужение аортального отверстия.
Диагноз сухого перикардита обычно ставится на основании клинических данных (шум трения перикарда). При скоплении жидкости в полости перикард а (минимальное количество, которое можно выявить рентгенологически составляет 30-50 мл), отмечается равномерное увеличение размеров сердца, последняя принимает трапециевидную форму. Дуги сердца сглажены и не дифференцируются. Сердце широко прилежит к диафрагме, поперечник его преобладает над длинником. Сердечно-диафрагмальные углы острые, сосудистый пучок укорочен, застой в легких отсутствует. Смещение пищевода не наблюдается, пульсация сердца резко ослаблена или отсутствует, но сохранена на аорте.
Слипчивый или сдавливающий перикардит - результат сращения между обоими листками перикарда, а также между перикардом и медиастинальной плеврой, что затрудняет сокращения сердца. При обызвествлении - «панцирное сердце».
Миокардиты
Различают:
1. инфекгшонно-аллергический
2. токсико-аллергический
3. идиопатический миокардиты
Клиника. Боли в сердце, учащение пульса со слабым его наполнением, расстройство ритма, появление признаков сердечной недостаточности. На верхушке сердца - систолический шум, тоны сердца глухие. Обращает внимание застой в легких.
Рентгенологическая картина обусловлена миогенной дилятацией сердца и признаками снижения сократительной функции миокарда, а также снижением амплитуды сердечных сокращений и их учащением, что в конечном счете приводит к застою в малом круге кровообращения. Основной рентгеновский признак увеличение желудочков сердца (преимущественно левого), трапециевидная форма сердца, предсердия увеличены в меньшей степени, чем желудочки. Левое предсердие может выходить на правый контур, возможно отклонение контрастированного пищевода, сокращения сердца небольшой глубины, учащены. При возникновении левожелудочковой недостаточности в легких появляется застой за счет затруднения оттока крови из легких. При развитии правожелудочковой недостаточности расширяется верхняя полая вена, появляются отеки.
РЕНТГЕНОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ЖЕЛУДОЧНО-КИШЕЧНОГО ТРАКТА
Болезни органов пищеварения занимают одно из первых мест в общей структуре заболеваемости, обращаемости и госпитализации. Так, около 30% населения имеют жалобы со стороны желудочно-кишечного тракта, 25,5% больных поступают в стационары по неотложной помощи, в общей смертности патология органов пищеварения составляет 15%.
Прогнозируется дальнейший рост заболеваний, преимущественно тех, в развитии которых играют роль стрессовые, дискенетические, имуннологические и метаболические механизмы (язвенная болезнь, колиты и др.). Утяжеляется течение заболеваний. Часто заболевания органов пищеварения сочетаются друг с другом и болезнями других органов и систем, возможно поражение органов пищеварения при системных заболеваниях (склеродермия, ревматизм, заболевания системы кроветворения и др.).
Строение и функция всех отделов пищеварительного канала могут быть исследованы с помощью лучевых методов. Для каждого органа разработаны оптимальные приемы лучевой диагностики. Установление показаний к лучевому исследованию и его планирование проводят на основании анамнестических и клинических данных. Учитываются и данные эндоскопического исследования, позволяющее осмотреть слизистую и получить материал для гистологического исследования.
Рентгенологическое исследование пищеварительного канала занимает особое место в рентгенодиагностике:
1) распознавание болезней пищевода, желудка и толстой кишки основывается на сочетании просвечивания и съемки. Здесь наиболее ярко проявляется значение опыта врача рентгенолога,
2) исследование желудочно-кишечного тракта требует предварительной подготовки (исследование натощак, использование очистительных клизм, слабительных средств).
3) необходимость искусственного контрастирования (водная взвесь сульфата бария, введение в полость желудка воздуха, в брюшную полость - кислорода и др.),
4) исследование пищевода, желудка и толстой кишки производится в основном «изнутри» со стороны слизистой оболочки.
Рентгенологическое исследование благодаря простоте, общедоступности и высокой результативности позволяет:
1) распознать большинство заболеваний пищевода, желудка и толстой кишки,
2) контролировать результаты лечения,
3) осуществлять динамические наблюдения при гастритах, язвенной болезни и др. заболеваниях,
4) производить скрининг больных (флюорография).
Методики приготовления бариевой взвеси. Успех рентгеновского исследования зависит, прежде всего, от способа приготовления бариевой взвеси. Требования, предъявляемые к водной взвеси сернокислого бария: максимальная мелкодислерстность, массообъемность, адгезивность и улучшение органолептических свойств. Существует несколько способов приготовления бариевой взвеси:
1. Кипячение из расчета 1:1 (на 100,0 BaS04 100 мл воды) в течение 2-3 часов.
2. Использование смесителей типа «Воронеж», электромиксеров, ультразвуковых установок, микроразмельчителей.
3. В последнее время с целью улучшения обычного и двойного контрастирования стремятся увеличить массообъемность сульфата бария и его вязкость за счет различного рода добавок, таких как дистилированный глицерин, полиглюкин, цитрат натрия, крахмал и др.
4. Готовые формы сульфата бария: сульфобар и др. патентованные препараты.
Ренттеноанатомия
Пищевод - полая трубка длиной 20-25см, шириной 2-Зсм. Контуры ровные, четкие. 3 физиологических сужения. Отделы пищевода: шейный, грудной, абдоминальный. Складки - про дольные в количестве 3-4. Проекции исследования (прямая, правое и левое косые позиции). Скорость продвижения бариевой взвеси по пищеводу 3-4 сек. Способы замедления - исследование в горизонтальном положении и прием густой пастообразной массы. Фазы исследования: тугое заполнение, изучение пневморельефа и рельефа слизистой.
Желудок. При анализе рентгенологической картины необходимо иметь представление о номенклатуре различных его отделов (кардиальный, субкардиальный отдел, тело желудка, синус, антральный отдел, пилорический отдел, свод желудка).
Форма и положение желудка зависят от конституции, пола, возраста, тонуса, положения исследуемого. Различают желудок в форме крючка (вертикально расположенный желудок) у астеников и рога (горизонтально расположенный желудок) у лиц гиперстенического сложения.
Желудок располагается большей частью в левом подреберье, но может смещаться в очень широких предела. Наиболее непостоянное положение нижней границы (в норме - на 2-4см выше гребня подвздошных костей, однако у худых намного ниже, часто над входом в малый таз). Наиболее фиксированные отделы - кардиальный и привратник. Большее значение имеет ширина ретрогастрального пространства. В норме оно не должно превышать ширину тела поясничного позвонка. При объемных процессах это расстояние увеличивается.
Рельеф слизистой оболочки желудка образован складками, межскладочными пространствами и желудочными полями. Складки представляются полосками просветления шириной 0,50,8см. Однако их размеры отличаются большой вариабельностью и зависят от пола, конституции, тонуса желудка, степени растяжения, настроения. Желудочные поля определяются в виде мелких дефектов наполнения на поверхности складок за счет возвышений, на вершине которых открываются протоки желудочных желез; размеры их в норме не превышают Змм и выглядят в виде тонкой сетки (так называемый тонкий рельеф желудка). При гастритах он становится грубым, достигая размеров 5-8мм, напоминая «булыжную мостовую».
Секреция желудочных желез натощак минимальная. В норме желудок должен быть пуст.
Тонус желудка - способность его охватывать и удерживать глоток бариевой взвеси. Различают нормотоничный, гипертоничный, гипотоничный и атоничный желудок. При нормальном тонусе бариевая взвесь опускается медленно, при пониженном быстро.
Перистальтика - ритмическое сокращение стенок желудка. Обращается внимание на ритм, длительность отдельных волн, глубину и симметричность. Различают глубокую, сегментирующую, среднюю, поверхностную перистальтику и отсутствие ее. Для возбуждения перистальтики иногда приходится прибегать к морфинной пробе (п/к 0,5 мл морфина).
Эвакуация. В течение первых 30 минут из желудка эвакуируется половина принятой водной взвеси сульфата бария. Полностью желудок освобождается от бариевой взвеси в течение 1,5 часов. В горизонтальном положении на спине опорожнение резко замедляется, на правом боку ускоряется.
Пальпация желудка в норм е безболезненная.
Двенадцатиперстная кишка имеет форму подковы, длина ее от 10 до 30 см, ширина - от 1,5 до 4 см. В ней различают луковицу, верхнегоризонтальную, нисходящую и нижнегоризонтальную части. Рисунок слизистой перистый, непостоянный за счет Керкринговых складок. Кроме того., различают малую и
большую кривизну, медиальный и латеральный карманы, а также переднюю и заднюю стенки двенадцатиперстной кишки.
Методики исследования:
1) обычное классическое исследование (во время исследования желудка)
2) исследование в условиях гипотонии (зондовой и беззондовой) с использованием атропина и его производных.
Аналогично исследуется и тонкая кишка (подвздошная и тощая).
Рентгеновская симптоматика заболеваний органов пищеварительного тракта чрезвычайно разнообразна. Основные ее синдромы:
1) изменение положения органа (дислокация). Например, смещение пищевода увеличенными лимфоузлами, опухолью, кистой, левым предсердием, смещение при ателектазе, плеврите и др. Желудок и кишечник смещается при увеличении печени, грыжах пищеводного отверстия диафрагмы и пр;
2) деформации. Желудок в форме кисета, улитки, реторты, песочных часов; двенадцатиперстная кишка - луковица в виде трилистника;
3) изменение размеров: увеличение (ахалазия пищевода, стеноз пилоро-дуоденальной зоны, болезнь Гиршпрунга и др.), уменьшение (инфильтрирующая форма рака желудка),
4) сужения и расширения: диффузные (ахалазия пищевода, стеноз желудка, кишечная непроходимость и др., локальные (опухолевые, рубцовые и др.);
5) дефект наполнения. Обычно определяется при тугом заполнении за счет объемного образования (экзофитно растущая опухоль, инородные тела, безоары, каловый камень, остатки пищи и
др.);
6) симптом «ниши» - является результатом изъязвления стенки при язве, опухоли (при раке). Различают «нишу» на контуре в виде дивертикулоподобиого образования и на рельефе в виде «застойного пятна»;
7) изменение складок слизистой (утолщение, обрыв, ригидность, конвергенция и др.);
8) ригидность стенки при пальпации и раздувании (последняя не меняется);
9) изменение перистальтики (глубокая, сегментирующая, поверхностная, отсутствие перистальтики);
10) болезненность при пальпации).
Заболевания пищевода
Инородные тела. Методика исследования (просвечивание, обзорные снимки). Больной принимает 2-3 глотка густой бариевой взвеси, затем 2-3 глотка воды. При наличии инородного тела на верхней поверхности его остаются следы бария. Делаются снимки.
Ахалазия (неспособность к расслаблению) - расстройство иннервации пищеводно-желудочного перехода. Рентгеновская семиотика: четкие, ровные контуры сужения, симптом «писчего пера», выраженное супрастенотическое расширение, эластичность стенок, периодическое «проваливание» взвеси бария в желудок, отсутствие газового пузыря желудка и длительность доброкачественного течения заболевания.
Рак пищевода. При экзофитно растущей форме заболевания рентгеновская семиотика характеризуется 3 классическими признаками: дефект наполнения, злокачественный рельеф, ригидность стенки. При инфильтративной форме имеет место ригидность стенки, неровность контуров, изменение рельефа слизистой. Следует дифференцировать с рубцовыми изменениями после ожогов, варикозным расширением вен, кардиоспазмом. При всех этих заболеваниях сохраняется перистальтика (эластичность) стенок пищевода.
Заболевания желудка
Рак желудка. У мужчин занимает первое место в структуре злокачественных опухолей. В Японии носит характер национальной катастрофы, в США отмечается тенденция к снижению заболевания. Преимущественный возраст 40-60 лет.
Классификация. Наибольшее распространение получило деление рака желудка на:
1) экзофитные формы (полиповидный, грибовидный, в виде цветной капусты, чашеобразный, бляшковидная форма с изъязвлением и без изъязвления),
2) эндофитные формы (язвенно-инфильтратизные). На долю последних приходится до 60% всех раков желудка,
3) смешанные формы.
Рак желудка метастазирует в печень (28%), забрюшинные лимфоузлы (20%), брюшину (14%), легкие (7%), кости (2%). Чаще всего локализуется в антральном отделе (свыше 60%) и в верхних отделах желудка (около 30%).
Клиника. Часто рак годами маскируется под гастрит, язвенную болезнь, желчнокаменную болезнь. Отсюда, при любом желудочном дискомфорте показано рентгенологическое и эндоскопическое исследование.
Рентгеновская семиотика. Различают:
1) общие признаки (дефект наполнения, злокачественный или атипичный рельеф слизистой, отсутствие перистгльтики), 2) частные признаки (при экзофитных формах - симптом обрыва складок, обтекания., разбрызгивания и др.; при эндсфитных формах - выпрямление малой кривизны, неровность контура, деформация желудка; при тотальном поражении - симптом микрогастриума.). Кроме того, при инфильтративных формах обычно плохо выражен или отсутствует дефект наполнения, почти не изменяется рельеф слизистой, часто наблюдается симптом плоских вогнутых дуг (в виде волн по малой кривизне), симптом ступеньки Гаудека.
Рентгеносемиотика рака желудка зависит и от локализации. При локализации опухоли в выходном отделе желудка отмечается:
1) удлинение пилорическсго отдела в 2-3 раза, 2) имеет место коническое сужение пилорического отдела, 3) наблюдается симптом подрытости основания пилорического отдела 4) расширение желудка.
При раке верхнего отдела (это раки с длительным «немым» периодом) имеют место: 1) наличие дополнительной тени на фоне газового пузыря,
2) удлинение абдоминального отдела пищевода,
3) разрушение рельефа слизистой,
4) наличие краевых дефектов,
5) симптом обтекания - «дельты»,
6) симптом разбрызгивания,
7) притупление угла Гисса (в норме он острый).
Раки большой кривизны склонны к изъязвлению - глубокие в виде колодца. Однако и любая доброкачественная опухоль в этой области склонна к изъязвлению. Поэтому с заключением надо быть осторожным.
Современная лучевая диагностика рака желудка. В последнее время возросло количество рака в верхних отделах желудка. Среди всех методов лучевой диагностики базовым остается рентгенологическое исследование с тугим наполнением. Считается, что на долю диффузных форм рака сегодня приходится от 52 до 88%. При этой форме рак длительное время (от нескольких месяцев до одного года и более) распространяется преимущественно внутристеночно с минимальными изменениями на поверхности слизистой. Отсюда, эндоскопия часто неэффективна.
Ведущими рентгенологическими признаками внутристеночно растущего рака следует считать неровность контура стенки при тугом заполнении (часто одной порции бариевой взвеси недостаточно) и утолщение ее в месте опухолевой инфильтрации при двойном контрастировании на протяжении 1,5 - 2,5 см.
Из-за малой протяженности поражения часто перистальтика перекрывается соседними участками. Иногда диффузный рак проявляется резкой гиперплазией складок слизистой. Часто складки конвергируют или огибают участок поражения, в результате чего создается эффект отсутствия складок - (лысого пространства) с наличием в центре небольшого пятна бария, обусловленного не изъязвлением, а вдавлением стенки желудка. В этих случаях полезны такие методы как УЗИ, КТ, МРТ.
Гастриты. В последнее время в диагностике гастритов произошло смещение акцента в сторону гастроскопии с биопсией слизистой желудка. Однако рентгенологическое исследование занимает важное место в диагностике гастритов из-за доступности, простоты.
Современное распознавание гастрита базируется на изменениях тонкого рельефа слизистой, но для его выявления необходимо двойное эндогастральное контрастирование.
Методика исследования. За 15 минут до исследования подкожно вводится 1мл 0,1% раствора атропина или дается 2-3 таблетки аэрона (под язык). Затем производится раздувание желудка газообразующей смесью с последующим приемом 50мл водной взвеси сульфата бария в виде насты со специальными добавками. Больной укладывается в горизонтальное положение и делается 23 ротационных движений с последующим производством снимков на спине и в косых проекциях. Затем проводится обычное исследование.
С учетом рентгенологических данных выделяется несколько типов изменения тонкого рельефа слизистой желудка:
1) мелкосетчатый или гранулярный (ареолы 1-3 мм),
2) модулярный -(размер ареол 3-5 мм),
3) грубонодулярный - (размер ареол более 5 мм, рельеф в виде «булыжной мостовой»). Кроме того, в диагностике гастритов учитываются и такие признаки, как наличие жидкости натощак, грубый рельеф слизистой, разлитая болезненность при пальпации, спазм привратника, рефлюксы и др.
Доброкачественные опухоли. Среди них наибольшее практическое значение имеют полипы и лейомиомы. Одиночный полип при тугом заполнении обычно определяется в виде округлого дефекта наполнения с четкими, ровными контурами размером 1-2 см. Складки слизистой обходят дефект наполнения или полип располагается на складке. Складки мягкие, эластичные, пальпация безболезненна, перистальтика сохранена. Лейомиомы отличаются от рентгеновской семиотики полипов сохраненностью складок слизистой и значительными размерами.
Безоары. Следует различать камни желудка (безоары) и инородные тела (проглоченны е кости, косточки фруктов и пр.). Термин безоар связан с названием горного козла, в желудке которого находили камни от облизанной шерсти.
Несколько тысячелетий камень считался антидотом и ценился выше золота, так как он якобы приносит счастье, здоровье, молодость.
Природа безоаров желудка различна. Чаще всего встречаются:
1) фитобезоары (75%). Образуются при поедании большого количества фруктов, содержащих много клетчатки (незрелая хурма и др.),
2) себобезоары - возникают при поедании большого количества жира с высокой точкой плавления (бараний жир),
3) трихобезоары - встречаются у людей, имеющих вредную привычку откусывать и глотать волосы, а также у людей ухаживающих за животными,
4) пиксобезоары - результат жевания смол, вара, жвачки,
7)описаны безоары, состоящие из песка, асфальта, крахмала и резины.
Безоары обычно клинически протекают под маской опухоли: боли, рвота, похудание, пальпируемая опухоль.
Рентгенологически безоары определяются в виде дефекта наполнения с неровными контурами. В отличие от рака, дефект наполнения смещается при пальпации, сохраняется перистальтика и рельеф слизистой. Иногда безоар симулирует лимфосаркому, лимфому желудка.
Язвенная болезнь желудка и 12-ти перегной кишки чрезвычайно распространена. Страдает 7-10% населения планеты. Ежегодные обострения наблюдаются у 80% больных. В свете современных представлений это общее хроническое, циклически протекающее, рецидивирующее заболевание, в основе которого лежат сложные этиологические и патологические механизмы язво-образования. Это результат взаимодействия факторов агрессии и защиты (слишком сильные факторы агрессии при слабых факторах защиты). Фактором агрессии является пептический протеолиз при длительной гиперхлоргидрии. К факторам защиты относится слизистый барьер, т.е. высокая регенераторная способность слизистой, устойчивая нервная трофика, хорошая васкуляризация.
В течении язвенной болезни различают три стадии: 1) функциональные расстройства в виде гастродуоденита, 2) стадия сформировавшегося язвенного дефекта и 3) стадия осложнений (пенетрация, перфорация, крэвотечение, деформация, перерождение в рак).
Рентгенологические проявления гастродуоденита: гиперсекреция, нарушение моторики, перестройка слизистой в виде грубых расширенных подушкообразных складок, грубый микрорельеф, спазм или зияние превратиика, дуоденогастралъный рефлюкс.
Признаки язвенной болезни сводятся к наличию прямого признака (ниша на контуре или на рельефе) и косвенных признаков. Последние в свою очередь подразделяются на функциональные и морфологические. К функциональным относятся гиперсекреция, спазм привратника, замедление эвакуации, локальный спазм в виде «указующего перста» на противоположной стенке, местная гиперматильность, изменение перистальтики (глубокая, сегментирующая), тонуса (гипертонус), дуоденогастралъный рефлюкс, желудочнопищеводный рефлюкс и др. Морфологическими признаками являются дефект наполнения за счет воспалительного вала вокруг ниши, конвергенция складок (при рубцевании язвы), рубцовая деформация (желудок в форме кисета, песочных часов, улитки, каскада, луковица 12-ти перстной кишки в виде трилистника и др.).
Чаще язва локализуется в области малой кривизны желудка (36-68%) и протекает относительно благоприятно. В антральном отделе язвы располагаются также относительно часто 9-15%) и встречаются, как правило, у лиц молодого возраста, сопровождаясь признаками язвенной болезни 12-ти перстной кишки (поздние голодные боли, изжога, рвота и пр.). Рентгенодиагностика их затруднена из-за выраженной двигательной активности, быстрого прохождения бариевой взвеси, сложности выведения язвы на контур. Часто осложняются пенетрацией, кровотечением, перфорацией. В кардиальном и субкардиальном отделе язвы локализуются в 2-18% случаев. Обычно встречаются у пожилых людей и представляют определенные трудности для эндоскопической и рентгенологической диагностики.
По своей форме и размерам ниши при язвенной болезни вариабильны. Нередко (13-15%) наблюдается множественность поражения. Частота выявления ниши зависит от многих причин (локализации, размеров, наличия жидкости в желудке, заполнения язвы слизью, сгустком крови, остатками пищи) и составляет от 75 до 93%. Довольно часто встречаются гигантские ниши (свыше 4 см в диаметре), пенетрирующие язвы (2-х - 3-х сложность ниши).
Язвенную (доброкачественную) нишу следует дифференцировать от раковой. Раковые ниши имеют ряд особенностей:
1) преобладание продольного размера над поперечным,
2) изъязвление располагается ближе к дистальному краю опухоли,
3) ниша имеет неправильную форму с бугристыми очертаниями, обычно не выводится за пределы контура, ниша безболезненна при пальпации, плюс признаки, свойственные раковой опухоли.
Язвенные ниши обычно
1) располагаются вблизи малой кривизны желудка,
2) выходят за контуры желудка,
3) имеют форму конуса,
4) поперечник больше длинника,
5) болезненны при пальпации, плюс признаки язвенной болезни.
ЛУЧЕВОЕ ИССЛЕДОВАНИЕ ОПОРНО-ДВИГАТЕЛЬНОЙ СИСТЕМЫ
В 1918 году в Государственном рентгенорадиологическом институте в г. Петрограде была открыта первая в мире лаборатория для исследования анатомии человека и животных с помощью рентгеновского исследования.
Рентгенологический метод позволил получить новые данные об анатомии и физиологии опорно-двигательного аппарата: исследовать строение и функцию костей и суставов прижизненно, в целостном организме, при воздействии на человека разнообразных факторов внешней среды.
Большой вклад в развитие остеопатологии внесла группа отечественных ученых: С.А. Рейнберг, Д.Г. Рохлин, ПА. Дьяченко и др.
Рентгенологический метод в изучении опорно-двигательной системы является ведущим. Основные его методики: рентгенография (в 2-х проекциях), томография, фистулография, снимки с увеличением рентгеновского изображения, контрастные методики.
Важным методом в исследовании костей и суставов является рентгеновская компьютерная томография. Ценным методом следует признать и мапгитно-резонансную томографию, особенно при исследовании костного мозга. Для исследования обменных процессов в костях и суставов широко используются методы радионуклидной диагностики (метастазы в кости выявляются раньше рентгенологического исследования на 3-12 месяцев). Новые пути диагностики заболеваний опорно-двигательной системы открывает сонография, особенно в диагностике инородных тел, слабопоглощающих рентгеновские лучи, суставных хрящей, мышц, связок, сухожилий, скопление крови и гноя в околокостных тканях, околосуставных кист и др.
Лучевые методы исследования позволяют:
1. проследить за развитием и формированием скелета,
2. оценить морфологию кости (форму, очертания, внутреннюю структуру и пр.),
3. распознать травматические повреждения и диагностировать различные заболевания,
4. судить о функциональной и патологической перестройке (вибрационная болезнь, маршевая стопа и др.),
5. изучить физиологические процессы в костях и суставах,
6. оценить реакцию на различные факторы (токсические, механические и пр.).
Лучевая анатомия.
Максимальная прочность конструкции при минимальной трате строительного материала характеризуют анатомические особенности строения костей и суставов (бедренная кость выдерживает нагрузку по продольной оси в 1,5 тонны). Кость является благоприятным объектом рентгенологического исследования, т.к. содержит много неорганических веществ. Кость состоит из костных балок и трабекул. В корковом слое они плотно прилежат, образуя однородную тень, в эпифизах и метафизах - находятся на некотором расстоянии, образуя губчатое вещество, между ними находится костномозговая ткань. Соотношение костных балок и костномозговых пространств создают костную структуру. Отсюда, в кости различают: 1) плотный компактный слой, 2) губчатое вещество (ячеистой структуры), 3) костномозговой канал в центре кости в виде щюсветления. Различают трубчатые, короткие, плоские и смешанные кости. В каждой трубчатой кости различают эпифиз, метафиз и диафиз, а также апофизы. Эпифиз суставной отдел кости, покрытый хрящом. У детей он отделяется от метафиза ростковым хрящом, у взрослых метафизарным швом. Апофизы - дополнительные точки окостенения. Это места прикрепления мышц, связок и сухожилий. Деление кости на эпифиз, метафиз и диафиз имеет большое клиническое значение, т.к. некоторые заболевания имеют излюбленную локализацию (остеомиелит в области метадиафиза, туберкулез поражает эпифиз, саркома Юинга локализуется в области диафиза и др.). Между соединяющимися концами костей имеется светлая полоса так называемая рентгеновская суставная щель, обусловленная хрящевой тканью. На хороших снимках видна капсула сустава, суставная сумка, сухожилие.
Развитие человеческого скелета.
В своем развитии костный скелет проходит перепончатый, хрящевой и костный этапы. В течение первых 4-5 недель скелет плода перепончатый и на снимках не виден. Нарушения развития в этот период ведут к изменениям, составляющим группу фиброзных дисплазий. В начале 2-го месяца утробной жизни плода перепончатый скелет замещается хрящевым, также на рентгенограммах не получающим своего отображения. Нарушения развития ведут к хрящевым дисплазиям. Начиная со 2-го месяца и до 25 лет хрящевой скелет замещается костным. К концу внутриутробного периода большая часть скелета является костным и на снимках живота беременной кости плода хорошо видны.
Скелет новорожденных имеет следующие особенности:
1. кости малы,
2. они бесструктурны,
3. в концах большинства костей еще нет ядер окостенения (эпифизы не видны),
4. рентгеновские суставные щели велики,
5. большой мозговой череп и малый лицевой,
6. относительно велики орбиты,
7. слабо выраженные физиологические изгибы позвоночника.
Рост костного скелета происходит за счет ростковых зон в длину, в толщину - за счет периоста и эндоста. В возрасте 1-2 лет начинается дифференцировка скелета: появляются точки окостенения, кости синостозируются, увеличиваются в размерах, появляются изгибы позвоночника. ?ост костного скелета заканчивается к 20-25 годам. Между 20-25 годами и до 40-летнего возраста костно-суставной аппарат относительно стабилен. С 40 лет начинаются инволютивные изменения (дистрофические изменения суставного хряща), разрежение костной структуры, появление остеопороза и обызвествления в местах прикрепления связок и т.д. На рост и развитие костно-суставной системы оказывают влияние все органы и системы, особенно паращитовидные железы, гипофиз и ЦНС.
План изучения рентгенограмм костно-суставной системы. Необходимо оценить:
1) форму, положение, величину костей и суставов,
2) состояние контуров,
3) состояние костной структуры,
4) выявить состояние ростковых зон и ядер окостенения (у детей),
5) изучить состояние суставных концов костей (рентгеновской суставной щели),
6) оценить состояние мягких тканей.
Рентгеновская семиотика заболеваний костей и суставов.
Рентгеновская картина изменений кости при любом патологическом процессе складывается из 3-х компонентов: 1) изменения формы и величины, 2) изменения контуров, 3) изменения структуры. В большинстве случаев патологический процесс ведет к деформации кости, складывающейся из удлинения, укорочения и искривления, к изменению объема в виде утолщения за счет периостита (гиперостоз), истончения (атрофия) и вздутия (киста, опухоль и пр.).
Изменение контуров кости: контуры кости в норме характеризуются ровностью (гладкостью) и четкостью. Лишь в местах прикрепления мышц и сухожилий, в области бугров и бугристостей контуры шероховаты. Не четкость контуров, неровность их нередко является результатом воспалительных или опухолевых процессов. Например, разрушение кости в результате прорастания рака слизистой полости рта.
Все физиологические и патологические процессы, происходящие в костях, сопровождаются изменением костной структуры, уменьшением или увеличением костных балок. Своеобразное сочетание этих явлений создают в рентгеновском изображении такие картины, которые присущи определенным заболеваниям, позволяя диагностировать их, определять фазу развития, осложнения.
Структурные изменения кости могут носить характер физиологической (функциональной) и патологической перестройки, вызванной различными причинами (травматическими, воспалительными, опухолевыми, дегенеративно-дистрофическими и др.).
Насчитывается свыше 100 заболеваний, сопровождающихся изменением содержания минералов в костях. Наиболее часто является остеопороз. Это - уменьшение количества костных балок в единице объема кости. При этом общий объем и форма кости обычно остаются без изменений (если нет атрофии).
Различают: 1) идиопатический остеопороз, развивающийся без видимых причин и 2) при различных заболеваниях внутренних органов, эндокринных желез, в результате приема лекарств и др. Кроме того, остеопороз могут вызвать нарушения питания, состояние невесомости, алкоголизм, неблагоприятные условия труда, длительная иммобилизация, воздействие ионизирующих излучений и др.
Отсюда, в зависимости от причин различают остеопороз физиологический (инволютивный), функциональный (от бездеятельности) и патологический (при различных заболеваниях). По распространенности остеопороз подразделяют на: 1) местный, например, в области перелома челюсти спустя 5-7 дней, 2) регионарный, в частности, захватывающий область ветви нижней челюсти при остеомиелите 3) распространенный, когда поражается область тела и ветви челюсти и 4) системный, сопровождающийся поражением всего костного скелета.
В зависимости от рентгенологической картины различают: 1) очаговый (пятнистый) и 2) диффузный (равномерный) остеопороз. Пятнистый остеопороз определяется в виде очагов разрежения костной ткани размером от 1 до 5мм (напоминает материю Изъеденную молью). Встречается при остеомиелите челюстей в острой фазе его развития. В челюстных костях чаще наблюдается диффузный (стеклянный) остеопороз. При этом кость становится прозрачной, структура широкопетлистой, корковый слой истончается в виде очень узкой плотной линии. Наблюдается в старческом возрасте, при гиперпаратиреоидной остеодистрофии и других системных заболеваниях.
Остеопороз может развиться в течение нескольких дней и даже часов (при каузалгиях), при иммобилизации - за 10-12 дней, при туберкулезе требуется несколько месяцев и даже лет. Остеопороз - процесс обратимый. С устранением причины костная структура восстанавливается.
Выделяют и гипертрофический остеопороз. При этом на фоне общей прозрачности отдельные костные балки представляются гипертрофированными.
Остеосклероз - симптом довольно часто встречающихся при заболеваниях костей. Сопровождается увеличением количества костных балок в единице объема кости и уменьшением межблочных костномозговых пространств. При этом кость становится более плотной, бесструктурной. Корковый слой расширяется, костномозговой канал суживается.
Различают: 1) физиологический (функциональный) остеосклероз, 2) идиопатический в результате аномалии развития (при мраморной болезни, миелореостозе, остеопойкилии) и 3) патологический (посттравматический, воспалительный, токсический и др.).
В отличие от остеопороза, для возникновения остеосклероза требуется довольно длительное время (месяцы, годы). Процесс необратимый.
Деструкция - разрушение кости с замещением ее патологической тканью (грануляционной, опухолевой, гноем, кровью и др.).
Различают: 1) воспалительную деструкцию (остеомиелит, туберкулез, актиномикоз, сифилис), 2) опухолевую (остеогенная саркома, ретикулосаркома, метастазы и др.), 3) дегенеративно-дистрофическую (гиперпаратиреоидная остеодистрофия, остеоартроз, кисты при деформирующем остеоартрозе и др.).
Рентгенологически, независимо от причин, деструкция проявляется просветлением. Она может выглядеть мелко или крупноочаговой, многоочаговой и обширной, поверхностной и центральной. Поэтому для установления причин необходим тщательный анализ очага деструкции. Необходимо определить локализацию, размеры, количество очагов, характер контуров, рисунок и реакцию окружающих тканей.
Остеолиз - полное рассасывание кости без замещения ее какой-либо патологической тканью. Это результат глубоких нейротрофических процессов при заболеваниях центральной нервной системы, повреждениях периферических нервов (спинная сухотка, сирингомиелия, склеродермия, проказа, чешуйчатый лишай и др.). Рассасыванию подвергаются периферические (концевые) отделы кости (ногтевые фаланги, суставные концы крупных и мелких суставов). Этот процесс наблюдается при склеродермии, сахарном диабете, травматических повреждениях, ревматоидном артрите.
Частым спутником заболеваний костей и суставов являются остеонекроз и секвестрация. Остеонекроз - омертвление участка кости вследствие нарушения питания. При этом в кости уменьшается количество жидких элементов (кость «высыхает») и рентгенологически такой участок определяется в виде затемнения (уплотнения). Различают: 1) асептические остеонекоозы (при остеохондропатии, тромбозах и эмболиях кровеносных сосудов), 2) септические (инфекционные), встречающиеся при остеомиелите, туберкулезе, актиномикозе и др. заболеваниях.
Процесс отграничения участка остеонекроза называется секвестрацией, а отторгнутый участок кости - секвестром. Различают корковые и губчатые секвестры, краевые, центральные и тотальные. Секвестрация характерна для остеомиелита, туберкулеза, актиномикоза и других заболеваний.
Изменение контуров кости часто связано с периостальными наслоениями (периоститами и периостозами).
4) функционально-адаптационные периоститы. Две последние формы следует именовать пер гостозами.
При выявлении периостальных изменений следует обратить внимание на их локализацию, протяженность и характер наслоений, Чаще всего периоститы выявляются в области нижней челюсти.
По форме различают линейные, слоистые, бахромчатые, спикулообразные периоститы (периостозы) и периостит в виде козырька.
Линейные периоститы в виде тонкой полоски параллельной корковому слою кости обычно встречаются при воспалительных заболеваниях, травмах, саркоме Юинга и характеризуют начальные стадии заболевания.
Слоистые (луковичные) периоститы рентгенологически определяются в виде нескольких линейных теней и обычно свидетельствуют о толчкообразном течении процесса (саркома Юинга, хронический остеомиелит и др.).
При разрушении линейных наслоений возникает бахромчатый (разорванный) периостит. По своему рисунку он напоминает пемзу и считается характерным для сифилиса. При третичном сифилисе может наблюдаться: и кружевной (гребневидный) периостит.
Патогномоничным для злокачественных опухолей считается спикулообразный (игольчатый) периостит. Встречается при остеогенной саркоме в результате выхода опухоли в мягкие ткани.
Изменения рентгеновской суставной щели. являющейся отображением суставного хряща и могут быть в виде сужения -при разрушении хрящевой ткани (туберкулез, гнойный артрит, остеоартроз), расширения за счет увеличения хряща (остеохондропатия), а также подвывиха. При скоплении в полости сустава жидкости, расширения рентгеновской суставной щели не бывает.
Изменения мягких тканей весьма разнообразны и также должны быть объектом пристального рентгенологического исследования (опухолевые, воспалительные, травматические изменения).
Повреждения костей и суставов.
Задачи рентгенологического исследования:
1. подтвердить диагноз или отвергнуть его,
2. определить характер и вид перелома,
3. определить количество и степень смещения огломков,
4. обнаружить вывих или подвывих,
5. выявить инородные тела,
6. установить правильность лечебных манипуляций,
7. осуществлять контроль в процессе заживления. Признаки перелома:
1. линия перелома (в виде просветления и уплотнения) -поперечные, продольные, косые, внутрисуставные и пр. переломы.
2. смещение отломков: по ширине или боковое, по длине или продольное (с захождением, расхождением, вклинением отломков), по оси или угловое, по периферии (спиралевидное). Смещение определяют по периферическому отломку.
Особенности переломов у детей - обычно поднадкостничные, в виде трещины и эпифизолиза. У лиц пожилого возраста -переломы обычно носят многооскольчатый характер, с внутрисуставной локализацией, со смещением отломков, заживление медленное, часто осложняющееся развитием ложного сустава.
Признаки переломов тел позвонков: 1)клиновидная деформация с острием направленным кпереди, уплотнение структуры тела позвонка, 2) наличие тени гематомы вокруг пораженного позвонка, 3) смещение позвонка кзади.
Различают травматические и патологические переломы (в результате деструкции). Дифференциальная диагностика часто трудна.
Контроль за заживлением перелома. В течении первых 7-10 дней костная мозоль носит соединительнотканный характер и на снимках не видна. В этот период отмечается расширение линии перелома и закругленность, сглаженность концов сломанных костей. С 20-21 дня, чаще спустя 30-35 дней в костной мозоли появляются островки обызвествлений отчетливо определяемых на рентгенограммах. Полное обызвествление занимает от 8 до 24 недель. Отсюда, рентгенологически можно выявить: 1) замедление формирования костной мозоли, 2) чрезмерное её развитие, 3) В норме надкостница на снимках не определяется. Для ее выявления необходимы уплотнение (обызвествление) и отслоение. Периостит - ответная реакция надкостницы на то или иное раздражение. У детей рентгенологические признаки периостита определяются на 7-8, у взрослых - на 12-14 день.
В зависимости от причины различают: 1) асептические (при травме), 2) инфекционные (остеомиелит, туберкулез, сифилис), 3) ирритативно-токсические (опухоли, нагноительные процессы) и формирующийся или сформированный ложный сустав. При этом отсутствует костная мозоль, имеет место закругление и отшлифовка концов отломков и заращение костномозгового канала.
Перестройка костной ткани под влиянием чрезмерной механической силы. Кость чрезвычайно пластичный орган, перестраивающийся всю жизнь, приспосабливаясь к условиями жизнедеятельности. Это физиологическая перестройка. При предъявлении кости несоразмерно повышенных требований развивается патологическая перестройка. Это срыв приспособительного процесса, дезадаптация. В отличие от перелома в данном случае имеет место повторно действующая травматизация - суммарное влияние часто повторяющихся ударов и толчков (металл и тот не выдерживает). Возникают особые зоны временной дезинтеграции - зоны перестройки (лоозеровские зоны), зоны просветления, которые мало известны практическим врачам и часто сопровождаются диагностическими ошибками. Чаще всего поражается скелет нижних конечностей (стопа, бедро, голень, тазовые кости).
В клинической картине различают 4 периода:
1. в течение 3-5 недель (после строевых занятий, прыжков, работы с отбойным молотком и пр) появляется болезненность, хромота, пастозность над местом перестройки. Рентгенологических изменений в этот период нет.
2. спустя 6-8 недель хромота, сильные боли, припухлость и местная отечность увеличиваются. На снимках появляется нежная периостальная реакция (обычно веретенообразной формы).
3. 8-10 недель. Сильная хромота, боли, выраженная припухлость. Рентгенологически - выраженный периостоз веретенообразной формы, в центре которого линия «перелома», проходящая через поперечник кости и плохо прослеживаемый костномозговой канал.
4. период восстановления. Хромота исчезает, припухлости нет, рентгенологически периостальная зона уменьшается, костная структура восстанавливается. Лечение - сначала покой, затем физиопроцедуры.
Типичным примером патологической перестройки является маршевая стопа (болезнь Дойчлендера, перелом новобранцев, перегруженная стопа). Обычно поражается диафиз 2-3 плюсневой кости. Клиника описана выше. Рентгеносемиотика сводится к появлению линии просветления (перелома) и муфтообразному периоститу. Общая длительность заболевания 3-4 месяца. Другие разновидности патологической перестройки.
1. Множественные лоозеровские зоны в виде треугольных насечек по переднемедиальным поверхностям больших берцовых костей (у школьников во время каникул, спортсменов при чрезмерных тренировках).
2. Лакунарные тени поднадкостнично расположенные в верхней трети большеберцовых костей.
3. Полосы остеосклероза.
4. В виде краевого дефекта
Изменения в костях при вибрации возникают под влиянием ритмически действующего пневматического и вибрирующего инструмента (горняки, шахтеры, ремонтники асфальтовых дорог, некоторые отрасли металлообрабатывающей промышленности, пианисты, машинистки). Частота и интенсивность изменений зависит от стажа работы (10-15 лет). В группу риска входят лица до 18 лет и старше 40 лет. Методы диагностики: реовазография, термография, каппиляроскопия и пр.
Основные рентгенологические признаки:
1. островки уплотнения (эностозы) могут встречаться во всех костях верхней конечности. Форма неправильная, контуры неровные, структура неравномерная.
2. кистевидные образования чаще встречаются в костях кисти (запястья) и выглядят в виде просветления размером 0,2-1,2 см округлой формы с ободком склероза вокруг.
3. остеопороз.
4. остеолиз концевых фаланг кисти.
5. деформирующий остеоартроз.
6. изменения в мягких тканях в виде параоссальных обызвествлений и окостенений.
7. деформирующий спондилез и остеохондроз.
8. остеонекрозы (чаще полулунной кости).
КОНТРАСТНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ В ЛУЧЕВОЙ ДИАГНОСТИКЕ
Получение рентгеновского изображения связано с неравномерным поглощением лучей в объекте. Чтобы последний получил изображение, он должен иметь неодинаковое строение. Отсюда, некоторые объекты, как мягкие ткани, внутренние органы на обычных снимках не видна и требуют для своей визуализации применения контрастных средств (КС).
Вскоре, после открытия рентгеновых лучей, стали развиваться идеи получения изображения различных тканей с помощью КС. Одним из первых КС , которым сопутствовал успех, были соединения йода (1896). Впоследствии широкое применение в клинической практике, нашел буроселектан (1930) для исследования печени, содержавший один атом йода. Уроселектан явился прототипом всех КС, созданных позднее для исследования мочевыделительной системы. Вскоре появился уроселектан (1931), уже содержавший две молекулы йода, что позволило улучшить контрастность изображения при хорошей переносимости его организмом. В 1953 году появился трийодированный препарат урографии, оказавшийся полезным и для ангиографии.
В современной визуализированной диагностике КС обеспечивают существенное повышение информативности рентгенологических методов исследования, РКТ, МРТ и ультразвуковой диагностике. Все КС имеют одно назначение - увеличить разницу между различными структурами в отношении их способности абсорбировать или отражать электромагнитные излучения или ультразвука. Для выполнения своей задачи КС должны достичь определенной концентрации в тканях и быть безвредными, что, к сожалению, невозможно, так как они часто приводят к нежелательным последствиям. Отсюда, поиски высокоэффективных и безвредных КС продолжаются. Актуальность проблемы возрастает с появлением новых методов (РКТ, МРТ, УЗИ).
Современные требования к КС: 1) хорошая (достаточная) контрастность изображения, т.е. диагностическая эффективность, 2) физиологическая обоснованность (органоспецифичность, выведение по пути из организма), 3) общедоступность (экономичность), 4) безвредность (отсутствие раздражений, токсических повреждений и реакций), 5) простота введения и быстрота выведения из организма.
Пути введения КС чрезвычайно разнообразны: через естественные отверстия (слезные точки, наружный слуховой проход, через рот и др.), через послеоперационные и патологические отверстия (свищевые ходы, соустья и др.), через стенки с/с и лимфатической системы (пункция, катетеризация, секция и др.), через стенки патологических полостей (кисты, абсцессы, каверны и др.), через стенки естественных полостей, органов, протоков (пункция, трепанация),введения в клетчаточные пространства (пункция).
В настоящее время все КС делятся на:
1. рентгенологические
2. МРТ - контрастные вещества
3. УЗ - контрастные вещества
4. флюоресцирующие (для маммографии).
С практической точки зрения КС целесообразно подразделить на: 1) традиционные рентгенологические и КТ- контрастные средства, а также нетрадиционные, в частности, созданные на основе сернокислого бария.
Традиционные рентгеноконтрастные средства делятся на: а) негативные (воздух, кислород, углекислый газ и др.), б) позитивные, хорошо поглощающие рентгеновские лучи. Контрастные средства этой группы ослабляют излучение в 50-1000 раз по сравнению с мягкими тканями. Позитивные КС в свою очередь делятся на растворимые в воде (йодистые препараты) и нерастворимые в воде (сульфат бария).
Йодистые контрастные средства - их переносимость больными объясняется двумя факторами: 1) осмолярностью и 2) хемотоксичностью, включая и ионное воздействие. Для снижения осмолярности был предложен: а) синтез ионных димерных КС и б) синтез неионных мономеров. Например, ионные димерные КС были гиперосмолярными (2000 м моль/л.), тогда как ионные димеры и неионные мономеры уже имели осмолярность значительно ниже (600-700 м моль/л), снизилась и их хемотоксичность. Неионный мономер «Омнипак» начал применяться с 1982 года и судьба его сложилась блестяще. Из неионных димеров «Визипак» - следующий шаг в развитии идеальных КС. Он обладает изоосмолярносггью, т.е. его осмолярность равна плазме крови (290 м моль/л). Неионные димеры больше всех КС на данном этапе развития науки и технологий соответствуют понятию «Идеальные контрастные средства».
КС для РКТ. В связи с широким распространением РКТ стали разрабатываться КС селективного контрастирования для различных органов и систем, в частности, почек, печени, так как современные водорастворимые холецистографические и урографические КС оказались недостаточными. В определенной степени требованиям КС при РКТ отвечает «Йозефанат». Это КС избирательно концентрируется в ф)тткционирующих гепатоцитах и может использоваться при опухолях и циррозах печени. Хорошие отзывы поступают и при использовании «Визипака», а также капсулированного «Йодиксанола». Все эти КС при КТ перспективны при визуализации мегастазов печени, карцином печени, гемангиом.
Как ионные, так и неионные (в меньшей степени) могут вызвать реакции и осложнения. Побочные действия йодсодержащих КС составляют серьезную проблему. По данным международной статистики, поражение почек КС остается одним из основных видов ятрогенной почечной недостаточности, составляющей около 12% госпитальной острой почечной недостаточности. Васкулярная боль при в/в введении препарата, ощущение жара во рту, горький вкус, озноб, покраснение, тошнота, рвота, боль в животе, учащение пульса, ощущение тяжести в грудной клетке - далеко неполный перечень раздражающего действия КС. Может быть остановка сердца и дыхания, в отдельных случаях наступает смерть. Отсюда, различают три степени тяжести побочных реакций и осложнений:
1) легкие реакции («горячие волны», гиперемия кожных покровов, тошнота, небольшая тахикардия). Медикаментозной терапии не требуется;
2) средняя степень (рвота, сыпь, коллапс). Назначаются с/с и противоаллергические средства;
3) тяжелые реакции (анурия, поперечный миелит, остановка дыхания и сердца). Предсказать заранее реакции невозможно. Все предложенные методы профилактики оказались неэффективными. В последнее время предлагают пробу «на кончике иглы». В ряде случаев рекомендуется премедикация, в частности преднизалоном и его производными.
В настоящее время лидерами качества среди КС являются «Омнипак» и «Ультравист», которые обладают высокой местной переносимостью, общей низкой токсичностью, минимальными гемодинамическими действиями и высоким качеством изображения. Используются при урографии, ангиографии, миелографии, при исследовании ЖКТ и др.
Рентгеноконтрастные вещества на основе сернокислого бария. Первые сообщения об использовании водной взвеси сернокислого бария в качестве КС принадлежат Р. Краузе (1912г.). Сернокислый барий хорошо поглощает рентгеновы лучи, легко смешивается в различных жидкостях, не растворяется и не образует различных соединений с секретами пищеварительного канала, легко измельчается и позволяет получать взвесь необходимой вязкости, хорошо прилипает к слизистой оболочке. На протяжении 80-ти с лишним лет совершенствуется методика приготовления водной взвеси сернокислого бария. Основные требования её сводятся к максимальной концентрации, мелкодисперстности и адгезивности. В связи с этим предложено несколько методов приготовления водной взвеси сернокислого бария:
1) Кипячение (1 кг бария подсушивают, просеивают, добавляют 800 мл воды и кипятят в течении 10-15 минут. Затем пропускают через марлю. Такая взвесь может храниться 3-4 дня);
2) Для достижения высокой дисперстности, концентрации и вязкости в настоящее время широко используют высокоскоростные смесители;
3) На вязкость и контрастность большое влияние оказывают различные стабилизирующие добавки (желатин, карбоксиметилцеллюлоза, слизь семени льна, крахмал и др.);
4) Использование ультразвуковых установок. При этом взвесь остается гомогенной и практически сульфат бария долгое время не оседает;
5) Использование патентованных отечественных и зарубежных препаратов с различными стабилизирующими веществами, вяжущими средствами, вкусовыми добавками. Среди них заслуживают внимание - баротраст, миксобар, сульфобар и др.
Эффективность двойного контрастирования повышается до 100% при использовании следующей композиции: сульфат бария - 650 г, цитрат натрия - 3,5 г, сорбит - 10,2 гр., антифосмилан -1,2 г, вода-100 г.
Взвесь сернокислого бария безвредна. Однако, при попадании в брюшную полость и в дыхательные пути возможны токсические реакции, при стенозах - развитие непроходимости.
К нетрадиционным йоднесодержащим КС относятся магнитные жидкости - ферромагнитные суспензии, которые перемещаются в органах и тканях внешним магнитным полем. В настоящее время имеется ряд композиций на основе ферритов магния, бария, никеля, меди, суспенизрованных в жидком водном носителе, содержащим крахмал, поливиниловый спирт и другие вещества с добавлением пудры металлических окислов бария, висмута и других химических веществ. Изготовлены специальные аппараты с магнитным устройством, способные управлять этими КС.
Считается, что ферромагнитные препараты могут применяться в ангиографии, бронхографии, сальпингографии, гастрографии. Пока широкого распространения этот метод в клинической практике не получил.
В последнее время среди нетрадиционных КС заслуживают внимания биодеградирующие контрастные средства. Это препараты на основе липосом (яичный лецитин, холестерин и др.), депонирующиеся избирательно в различных органах, в частности в клетках РЭС печени и селезенки (йопамидол, метризамид и др.). Синтезированы и бромированк ые липосомы для КТ, которые выделяются почками. Предложены КС на основе перфторуглеродистых и других нетрадиционных химических элементов, таких как тантал, вольфрам, молибден. К о об их практическом применении пока говорить рано.
Таким образом, в современной клинической практике используются в основном два класса рентгеновских КС - йодированные и сульфат бария.
Парамагнитные КС для МРТ. Для МРТ в настоящее время широкое распространение в качестве парамагнитного контрастного средства нашел «Магневист». Последний укорачивает время спинрешетчатой релаксации возбужденных ядер атомов, что увеличивает интенсивность сигнала и повышает контрастность изображения тканей. После в/в введения он быстро распределяется во внеклеточном пространстве. Выделяется из организма главным образом почками с помощью клубочковой фильтрации.
Область применения. Применение «Магневиста» показано при исследовании органов ЦНС, с целью обнаружения опухоли, а также для дифференциальной диагностики при подозрении на опухоль мозга, невриному слухового нерва, глиому, метастазы опухолей и др. С помощью «Магневиста» достоверно выявляют степень поражения головного и спинного мозга при рассеянном склерозе и контролируют эффективность проводимого лечения. «Магневист» используют в диагностике и дифференциальной диагностике опухолей спинного мозга, а также для выявления распространенности новообразований. «Магневист» используют и при проведении МРТ всего тела, включая исследование лицевого черепа, области шеи, грудной и брюшной полостей, молочных желез, тазовых органов, опорно-двигательного аппарата.
Для ультразвуковой диагностики в настоящее время созданы и стали доступными принципиально новые КС. Заслуживают внимания «Эховист» и «Левовост». Они представляют собой суспензию микрочастиц галактозы, содержащих пузырьки воздуха. Эти препараты позволяют, в частности, диагностировать заболевания, которые сопровождаются гемодинамическими изменениями в правых отделах сердца.
В настоящее время благодаря широкому использованию рентгеноконтрастных, парамагнитных средств и, используемых при ультразвуковом исследовании, возможности диагностики заболеваний различных органов м систем значительно расширились. Продолжаются исследования по созданию новых КС высокоэффективных и безопасных.
ОСНОВЫ МЕДИЦИНСКОЙ РАДИОЛОГИИ
Сегодня мы являемся свидетелями все ускоряющегося прогресса медицинской радиологии. В клиническую практику властно внедряются каждый год все новые методы получения изображения внутренних органов, способы лучевой терапии.
Медицинская радиология - одна из важнейших медицинских дисциплин атомного веке.. Она родилась на стыке 19-20 вв., когда человек узнал, что кроме привычного видимого нами мира, существует мир чрезвычайно малых величин, фантастических скоростей и необычных превращений. Это относительно молодая наука, дата ее рождения точно обозначена благодаря открытиям немецкого ученого В. Рентгена; (8 ноября 1895 г.) и французского ученого А. Беккереля (март 1996 г.): открытия рентгеновских лучей и явлений искусственной радиоактивности. Сообщение Беккереля определило судьбу П. Кюри и М. Складовской-Кюри (ими был выделен радий, радон, полоний). Исключительной значение для радиологии имели работы Розенфорда. Путем бомбардировки атомов азота альфа-частицами им были получены изотопы атомов кислорода, т. е. было доказано превращение одного химического элемента в другой. Это был «алхимик» 20 века, «крокодил». Им были открыты протон, нейтрон, что дало возможность нашему соотечественнику Иваненко создать теорию строения атомного ядра. В 1930 году был построен циклотрон, что позволило И. Кюри и Ф. Жолио-Кюри (1934) впервые получить радиоактивный изотоп фосфора. С этого момента началось бурное развитие радиологии. Из отечественных ученых следует отметить исследования Тарханова, Лондона, Кинбека, Неменова, внесших весомый вклад в клиническую радиологию.
Медицинская радиология - область медицины, разрабатывающая теорию и практику применения излучения в медицинских целях. Она включает в себя две основные медицинские дисциплины: лучевую диагностику (диагностическую радиологию) и лучевую терапию (радиационную терапию).
Лучевая диагностика - наука о применении излучений для исследования строения и функций нормальных и патологически измененных органов и систем человека с целью профилактики и распознавания заболеваний.
В состав лучевой диагностики входят рентгенодиагностика, радионуклидная диагностика, ультразвуковая диагностика и магнитно-резонансная визуализация. К ней также относят термографию, СВЧ-термометрию, магнитно-резонансную спектрометрию. Очень важное направление в лучевой диагностике - интервенционная радиология: выполнение лечебных вмешательств под контролем лучевых исследований.
Без радиологии сегодня не могут обойтись никакие медицинские дисциплины. Лучевые методы широко используют в анатомии, физиологии, биохимии и др.
Группировка излучений, используемых в радиологии.
Все излучения, используемые в медицинской радиологии, делят на две большие группы: неионизирующие и ионизирующие. Первые, в отличии от вторых, при взаимодействии со средой не вызывают ионизации атомов, т. е. их распада на противоположно заряженные частицы - ионы. Чтобы ответить на вопрос о природе и основных свойствах ионизирующих излучений, следует вспомнить строение атомов, т. к. ионизирующие излучение - внутриатомная (внутриядерная) энергия.
Атом состоит из ядра и электронных оболочек. Электронные оболочки - это определенный энергетический уровень, создаваемый вращающимися вокруг ядра электронами. Почти вся энергия атома заключается в его ядре - оно определяет свойства атома и его вес. Ядро состоит из нуклонов - протонов и нейтронов. Количество протонов в атоме равняется порядковому номеру химического элемента таблицы Менделеева. Сумма протонов и нейтронов обусловливает массовое число. Химические элементы, расположенные в начале таблицы Менделеева, в своем ядре имеют равное количество протонов и нейтронов. Такие ядра устойчивы. Элементы, расположенные в конце таблицы, имеют ядра, перегруженные нейтронами. Такие ядра становятся неустойчивыми и со временем распадаются. Это явление называется естественной радиоактивностью. Все химические элементы, расположенные в таблице Менделеева, начиная с № 84 (полоний), являются радиоактивными.
Под радиоактивностью понимают такое явление в природе, когда атом химического элемента распадается, превращаясь в атом другого элемента, с иными химическими свойствами и при этом в окружающую среду выделяется энергия в виде элементарных частиц и гамма-квантов.
Между нуклонами в ядре действуют колоссальные силы взаимного притяжения. Они характеризуются большой величиной и действуют на очень малом расстоянии, равному поперечнику ядра. Эти силы получили название ядерных сил, которые не подчиняются электростатическим законам. В тех случаях, когда в ядре имеется преобладание одних нуклонов над другими, ядерные силы становятся небольшими, ядро неустойчивым, и со временем распадается.
Все элементарные частицы и гамма-кванты обладают зарядом, массой и энергией. За единицу массы принята масса протона, заряда - заряд электрона.
В свою очередь элементарные частицы делятся на заряженные и незаряженные . Энергия элементарных частиц выражается в эв, Кэв, Мэв.
Чтобы получить из стабильного химического элемента радиоактивный, необходимо изменить протонно-нейтронное равновесие в ядре. Для получения искусственно радиоактивных нуклонов (изотопов) обычно используют три возможности:
1. Бомбардировка стабильных изотопов тяжелыми частицами в ускорителях (линейные ускорители, циклотроны, синхрофазотроны и проч.).
2. Использование ядерных реакторов. При этом радионуклиды образуются в качестве промежуточных продуктов распада U-235 (1-131, Cs-137, Sr-90 и др.).
3. Облучение стабильных элементов медленными нейтронами.
4. В последние время в клинических лабораториях для получения радионуклидов используют генераторы (для получения технеция - молибденовый, индия - заряженный оловом).
Известно несколько видов ядерных превращений. Наиболее распространенными являются следующие:
2. Электронный распад (откуда же берется электрон, т. к. в ядре его нет? Он возникает при переходе нейтрона в протон).
3. Позитронный распад (при этом протон превращается в нейтрон).
4. Цепная реакция - наблюдается при делении ядер ура-на-235 или плутония-239 при наличии так называемой критической массы. На этом принципе основано действие атомной бомбы.
5. Синтез легких ядер - термоядерная реакция. На этом принципе основано действие водородной бомбы. Для синтеза ядер нужна большая энергия, она берется при взрыве атомной бомбы.
Радиоактивные вещества, как естественные так и искусственные, с течением времени распадаются. Это можно проследить за эманацией радия, помещенного в запаянную стеклянную трубочку. Постепенно свечение трубочки уменьшается. Распад радиоактивных веществ подчиняется определенной закономерности. Закон радиоактивного распада гласит: «Количество распадающихся атомов радиоактивного вещества за единицу времени пропорционально количеству всех атомов», т. е. в единицу времени всегда распадается определенная часть атомов. Это так называемая постоянная распада (X). Она характеризует относительную скорость распада. Абсолютная скорость распада - это количество распадов в одну секунду. Абсолютная скорость распада характеризует активность радиоактивного вещества.
Единицей активности радионуклида в системе единиц СИ является беккерель (Бк): 1 Бк = 1 ядерному превращению за 1 с. На практике еще используют внесистемную единицу кюри (Ки): 1 Ки = 3,7 * 1010 ядерных превращений за 1 с (37 млрд. распадов). Это большая активность. В медицинской практике чаще используют милли и микро Ки.
Для характеристики скорости распада пользуются периодом, в течение которого активность уменьшается вдвое (T=1/2). Период полураспада определяется в с, мин, час, годах и тысячелетиях, Период полураспада, например, Тс-99т - 6 часов, а период полураспада Ra - 1590 лет, a U-235 - 5 млрд. лет. Период полураспада и постоянная распада находятся в определенной математической зависимости: T = 0,693. Теоретически полного распада радиоактивного вещества не происходит, поэтому на практике пользуются десятью периодами полураспада, т. е. по истечении этого срока радиоактивное вещество практически полностью распалось. Самый большой период полураспада у Bi-209 -200 тыс. млрд. лет, самый короткий -
Для определения активности радиоактивного вещества используются радиометры: лабораторные, медицинские, радиографы, сканеры, гамма-камеры. Все они построены по одному и тому же принципу и состоят из детектора (воспринимающего излучения), электронного блока (ЭВМ) и регистрирующего устройства, позволяющего получать информацию в виде кривых, цифр или рисунка.
Детекторами служат ионизационные камеры, газоразрядные и сцинтилляционные счетчики, полупроводниковые кристаллы или химические системы.
Решающее значение для оценки возможного биологического действия излучения имеет характеристика его поглощения в тканях. Величина энергии, поглощенная в единице массы облучаемого вещества, называется дозой, а та же величина, отнесенная к единице времени, называется мощностью дозы излучения. Единицей поглощенной дозы в системе СИ является грей (Гр): 1 Гр = 1 Дж/кг. Поглощенную дозу определяют расчетным путем, используя таблицы, или посредством введения миниатюрных датчиков в облучаемые ткани и полости тела.
Различают экспозиционную дозу и поглощенную дозу. Поглощенная доза - это количество лучевой энергии, поглощенной в массе вещества. Экспозиционная доза - это доза, измеренная в воздухе. Единицей экспозиционной дозы является рентген (миллирентген, микрорентген). Рентген (г) - это количество лучистой энергии, поглощенной в 1 см3 воздуха при определенных условиях (при 0°С и нормальном атмосферном давлении), образующей электрический заряд равный 1 или образующей 2,08x109 пар ионов.
Методы дозиметрии:
1. Биологические (эритемная доза, эпилляционная доза и т. д.).
2. Химические (метилоранж, алмаз).
3. Фотохимические.
4. Физические (ионизационные, сцинтилляционные и др.).
По своему назначению дозиметры делятся на следующие виды:
1. Для измерения излучения в прямом пучке (конденсаторный дозиметр).
2. Дозиметры контроля и защиты (ДКЗ) - для измерения мощности доз на рабочем месте.
3. Дозиметры индивидуального контроля.
Все эти задачи удачно сочетает в себе термолюминесцентный дозиметр («Телда»). С его помощью можно измерять дозы в пределах от 10 млрд. до 105рад, т. е. он может использоваться как для контроля защиты, так и для измерения индивидуальных доз, а также доз при лучевой терапии. При этом детектор дозиметра может быть вмонтирован в браслет, кольцо, нагрудный жетон и т. д.
РАДИОНУКЛИДНЫЕ ИССЛЕДОВАНИЯ ПРИНЦИПЫ, МЕТОДЫ, ВОЗМОЖНОСТИ
С появлением искусственных радионуклидов перед врачом открылись заманчивые перспективы: вводя в организм больного радионуклиды, можно наблюдать за их местоположением с помощью радиометрических приборов. За сравнительно короткий срок радионуклидная диагностика превратилась в самостоятельную медицинскую дисциплину.
Радионуклидный метод - это способ исследования функционального и морфологического состояния органов и систем с помощью радионуклидов и меченых ими соединений, которые называются РФП. Эти индикаторы вводятся в организм, а затем с помощью различных приборов (радиометров) определяют скорость и характер перемещения и выведения их из органов и тканей. Кроме того, для радиометрии могут быть использованы кусочки тканей, кровь, выделения больного. Метод обладает высокой чувствительностью и проводится in vitro (радиоимунный анализ).
Таким образом, целью радионуклидной диагностики является распознавание заболеваний различных органов и систем с использованием радионуклидов и меченых ими соединений. Сущность метода - регистрация и измерение излучений от введенных в организм РФП или радиометрия биологических проб с помощью радиометрических приборов.
Радионуклиды отличаются от своих аналогов - стабильных изотопов - лишь физическими свойствами, т. е. способны распадаться, давая излучение. Химические свойства одинаковы, поэтому введение их в организм не влияет на течение физиологических процессов.
В настоящее время известно 106 химических элементов. Из них 81 - имеет как стабильные, так и радиоактивные изотопы. Для остальных 25 элементов известны только радиоактивные изотопы. Сегодня доказано существование около 1700 нуклидов. Число изотопов химических элементов колеблется от 3 (водород) до 29 (платина). Из них 271 нуклид стабилен, остальные - радиоактивны. Около 300 радионуклидов находят или могут найти практическое применение в различных сферах человеческой деятельности.
С помощью радионуклидов можно измерить радиоактивность тела и его частей, изучить динамику радиоактивности, распределение радиоизотопов, измерить радиоактивность биологических сред. Следовательно, можно изучать обменные процессы в организме, функции органов и систем, течение секреторных и экскреторных процессов, изучить топографию органа, определить скорость кровотока, обмен газов и др.
Радионуклиды широко используются не только в медицине, но и в самых различных областях знаний: археологии и палеонтологии, металловедении, сельском хозяйстве, ветеринарии, судмед. практике, криминалистике и пр.
Широкое применение радионуклидных методов и их высокая информативность сделали радиоактивные исследования обязательным звеном клинического обследования больных, в частности головного мозга, почек, печени, щитовидной железы и других органов.
История развития. Еще в 1927 году были попытки использования радия для изучения скорости кровотока. Однако широкое изучение вопроса использования радионуклидов в широкой практике началось в 40-е годы, когда были получены искусственные радиоактивные изотопы (1934 г. - Ирен и Ф. Жолио Кюри, Франк, Верховская). Впервые был использован Р-32 для изучения обмена в костной ткани. Но до 1950 г. внедрение методов радионуклидной диагностики в клинику тормозилось техническими причинами: не было в достаточном количестве радионуклидов, простых в обращении радиометрических приборов, эффективных методик исследования. После 1955 г. исследования: в области визуализации внутренних органов интенсивно продолжалось в плане расширения ассортимента органотропных РФП и технического перевооружения. Было организовано производство коллоидного раствора Au-198,1-131, Р-32. С 1961 г. началось производство бенгальского розового-1-131, гиппурана-1-131. К 1970 г. в основном сложились определенные традиции использования конкретных методик исследования (радиометрия, радиография, гамматопография, клиническая радиометрия in vitro. Началось бурное развитие двух новых методик: сцинтиграфии на камерах и радиоимуннологических исследований in vitro, которые сегодня составляют 80% всех радионуклидных исследований в клинике. В настоящее время гаммакамера может получить такое же широкое распространение, как и рентгенологическое исследование.
Сегодня намечена широкая программа внедрения в практику лечебных учреждений радионуклидных исследований, которая успешно реализуется. Открываются все новые лаборатории, внедряются новые РФП, методики. Так, буквально за последние годы созданы и внедрены в клиническую практику туморотропные (цитрат галлия, меченный блеомицин) и остеотропные РФП.
Принципы, методы, возможности
Принципы и сущность радионуклидной диагностики - способность радионуклидов и меченых ими соединений избирательно накапливаться в органах и тканях. Все радионуклиды и РФП можно условно разделить на 3 группы:
1. Органотропные: а) с направленной органотропностью (1-131 - щитовидная железа, бенгальский розовый-1-131 - печень и др.); б) с косвенной направленностью, т. е. временная концентрация в органе по пути выведения из организма (моча, слюна, кал и т. д.);
2. Туморотропные: а) специфические туморотропные (цитрат галлия, меченый блеомицин); б) неспецифические туморотропные (1-131 при исследовании метастазов рака щитоввдной железы в кости, бенгальский розовый-1-131 при метастазах в печень и др.);
3. Определение опухолевых маркеров в сыворотке крови in vitro (альфафетопротеин при раке печени, раковоэмбриснальный антиген - опухоли ЖКТ, хориогонадотропин - хорионэпителиома и др.).
Преимущества радионукиидной диагностики:
1. Универсальность. Все органы и системы подвластны методу радионуклидной диагностики;
2. Комплексность исследований. Примером может служить исследование щитовидкой железы (определение внутритиреоидного этапа йодного цикла, транспортноорганического, тканевого, гамматопоргафия);
3. Низкая радиотоксичность (лучевая нагрузка не превышает дозы, получаемой пациентом при одном рентгеновском снимке, а при радиоимунном исследовании лучевая нагрузка исключается полностью, что позволяет широко использовать метод в педиатрической практике;
4. Высокая степень точности исследований и возможность количественной регистрации полученных данных с использованием ЭВМ.
С точки зрения клинической значимости радионуклидные исследования условно подразделяются на 4 группы:
3. Установить топографо-анатомические особенности органа (почек, печени, щитовидной железы и т. д.);
4. Получить дополнительную информацию в комплексном исследовании (легких, сердечно-сосудистой, лимфатической систем).
Требования к РФП:
1. Безвредность (отсутствие радиотоксичности). Радиотоксичность должна быть ничтожной, что зависит от периода полураспада и полувыведения (физический и биологический период полувыведения). Совокупность периодов полураспада и полувыведения - эффективный период полувыведения. Период полураспада должен быть от нескольких минут до 30 суток. В связи с этим, радионуклиды делятся на: а) долгоживущие - десятки дней (Se-75 - 121 день, Hg-203 - 47 дней); б) среднеживущие - несколько дней (1-131-8 дней, Ga-67 - 3,3 дня); в) короткоживущие - несколько часов (Тс-99т - 6 часов, In-113m - 1,5 часа); г) ультракороткоживущие - несколько минут (С-11, N-13, О-15 - от 2 до 15 минут). Последние используются при позитронно-эмиссионной томографии (ПЭТ).
2. Физиологическая обоснованность (избирательность накопления). Однако, сегодня, благодаря достижениям физики, химии, биологии и техники, стало возможным включать радионуклиды в состав различных химических соединений, биологические свойства которых резко отличаются от радионуклида. Так, технеций может использоваться в виде полифосфата, макро- и микроагрегатов альбумина и др.
3. Возможность регистрации излучений от радионуклида, т. е. энергия гамма-квантов и бетта-частиц должна быть достаточной (от 30 до 140 Кэв).
Методы радионуклидных исследований делятся на: а) исследование живого человека; б) исследование крови, секретов, экскретов и прочих биологических проб.
К методам in vivo относятся:
1. Радиометрия (всего тела или части его) - определение активности части тела или органа. Активность регистрируется в виде цифр. Примером может служить исследование щитовидной железы, ее активности.
2. Радиография (гаммахронография) - на радиографе или гаммакамере определяется динамика радиоактивности в виде кривых (гепаторадиография, радиоренография).
3. Гамматопография (на сканере или гаммакамере) - распределение активности в органе, что позволяет судить о положении, форме, размерах, равномерности накопления препарата.
4. Радиоимунный анашз (радиоконкурентный) - в пробирке определяются гормоны, ферменты, лекарственные средства и прочее. При этом РФП вводится в пробирку, например с плазмой крови пациента. В основе метода - конкуренция между веществом меченым радионуклидом и его аналогом в пробирке за комплексирование (соединение) со специфическим антителом. Антигеном является биохимическое вещество, которое следует определить (гормон, фермент, лекарственное вещество). Для анализа необходимо иметь: 1) исследуемое вещество (гормон, фермент); 2) меченый его аналог:, меткой обычно служит 1-125 с периодом полураспада 60 дней или тритий с периодом полураспада 12 лет; 3) специфическую воспринимающую систему, являющуюся предметом «конкуренции» между искомым веществом и его меченым аналогом (антитело); 4) систему разделения, отделяющую связанное радиоактивное вещество от несвязанного (активированный уголь, ионообменные смолы и др.).
Таким образом, радиоконкурентный анализ состоит из 4 основных этапов:
1. Смешивание пробы, меченого антигена и специфической воспринимающей системы (антитело).
2. Инкубация, т. е. реакция антиген-антитело до равновесия при температуре 4 °С.
3. Разделение свободного и связанного вещества с использованием активированного угля, ионообменных смол и др.
4. Радиометрия.
Результаты сопоставляются с эталонной кривой (со стандартом). Чем больше исходного вещества (гормон, лекарственное вещество), тем меньше меченого аналога будет захвачено связывающей системой и тем большая часть его останется несвязанной.
В настоящее время разработано свыше 400 соединений различной химической природы. Метод на порядок чувствительнее лабораторных биохимических исследований. Сегодня радио-имунный анализ широко используется в эндокринологии (диагностика сахарного диабета), в онкологии (поиск раковых маркеров), в кардиологии (диагностика инфаркта миокарда), в педиатрии (при нарушении развития ребенка), в акушерстве и гинекологии (бесплодие, нарушение развития плода), в аллергологии, в токсикологии и др.
В промышленно развитых странах сейчас основной акцент делается на организацию в крупных городах центров позитронной эмиссионной томографии (ПЭТ), включающей в свой состав кроме позитронно-эмиссионного томографа, еще и малогабаритный циклотрон для производства на месте позитронно-излучающих ультракороткоживущих радионуклидов. Где нет малогабаритных циклотронов изотоп (F-18 с периодом полураспада около 2 часов) получают из своих региональных центров по производству радионуклидов или используют генераторы (Rb-82, Ga-68, Cu-62).
В настоящее время радионуклидные методы исследования используют и с профилактической целью для выявления скрыто протекающих заболеваний. Так, любая головная боль требует исследования мозга с пертехнетатом-Тс-99т. Такого рода скрининг позволяет исключить опухоль и очаги кровоизлияния. Уменьшенная почка, обнаруженная в детстве при сцинтиграфии, должна быть удалена с целью профилактики злокачественной гипертонии. Капелька крови, взятая из пяточки ребенка, позволяет установить количество гормонов щитовидной железы. При недостатке гормонов проводится заместительная терапия, что позволяет нормально развиваться ребенку, не отставая от сверстников.
Требования, предъявляемые к радионуклидным лабораториям:
Одна лаборатория - на 200-300 тысяч населения. Преимущественно ее следует размещать в терапевтических клиниках.
1. Необходимо размещать лабораторию в отдельном здании, построенном по типовому проекту с охранной санитарной зоной вокруг. На территории последней нельзя строить детские учреждения и пищеблоки.
2. Радионуклидная лаборатория должна иметь определенный набор помещений (хранилище РФП, фасовочная, генераторная, моечная, процедурная, санпропускник).
3. Предусмотрена специальная вентиляция (пятикратная смена воздуха при использовании радиоактивных газов), канализация с рядом отстойников, в которых выдерживаются отходы не менее десяти периодов полураспада.
4. Должна проводиться ежедневная влажная уборка помещений.
Преподаем рентгенологию в стихах. А.В. Шумаков (продолжение)
Преподаем рентгенологию в стихах. А.В. Шумаков (продолжение)
Девиз рентгенолога - это девиз акына: "что вижу, про то и пою!" А выводы - народ сделает! Очень здорово и ПРАВИЛЬНО!
Спасибо!
Лучевая диагностика
ПРЕДИСЛОВИЕ
Медицинской радиологии (лучевой диагностике) немногим более 100 лет. За этот исторически короткий срок она вписала в летопись развития науки немало ярких страниц - от открытия В.К.Рентгена (1895 год) до стремительной компьютерной обработки медицинских лучевых изображении.
У истоков отечественной рентгенорадиологии стояли М.К.Неменов, Е.С.Лондон, Д.Г.Рохлин, Д.С.Линденбратен -выдающиеся организаторы науки и практического здравоохранения. Большой вклад в развтие лучевой диагностики внесли такие яркие личности как С.А.Рейнберг, Г.А.Зедгенизде, В.Я.Дьяченко, Ю.Н.Соколов, Л.Д.Линденбратен и др.
Основной целью дисциплины является изучение теоретических и практических вопросов общей лучевой диагностики (рентгенологической, радионуклвдной,
ультразвуковой, компьютерной томографии, магнитно-резонансной томографии и др.), необходимых в дальнейшем для успешного усвоения студентами клинических дисциплин.
Сегодня лучевая диагностика с учетом клинико-лабораторных данных позволяет в 80-85% распознать заболевание.
Данное руководство по лучевой диагностике составлена в соответствии с Государственным образовательным стандартом (2000 г) и Учебной программой, утвержденной ВУНМЦ (1997).
Сегодня наиболее распространенным методом лучевой диагностики является традиционное рентгенологическое исследование. Поэтому при изучении рентгенологии основное внимание уделяется методам исследования органов и систем человека (рентгеноскопия, рентгенография, ЭРГ, флюорография и др.), методике анализа рентгенограмм и общей рентгеновской семиотике наиболее часто встречающихся заболевании.
В настоящее время успешно развивается дигитальная (цифровая) рентгенография с высоким качеством изображения. Она отличается быстродействием, возможностью передачи изображе-ния на расстояние, удобством хранения информации на магнитных носителях (диски, ленты). Примером может служить рентгеновская компьютерная томография (РКТ).
Заслуживает внимания ультразвуковой метод исследования (УЗИ). В силу своей простоты, безвредности и эффективности метод становится одним из распространенных.
СОВРЕМЕННОЕ СОСТОЯНИЕ И ПЕРСПЕКТИВЫ РАЗВИТИЯ ЛУЧЕВОЙ ДИАГНОСТИКИ
Лучевая диагностика (диагностическая радиология) - самостоятельная отрасль медицины, объединяющая различные методы получения изображения в диагностических целях на основе использования различных видов излучения.
В настоящее время деятельность лучевой диагностики регламентируется следующими нормативными документами:
1. Приказ Минздрава РФ № 132 от 2.08.91 «О совершенствовании службы лучевой диагностики».
2. Приказ Минздрава РФ № 253 от 18.06.96 «О дальнейшем совершенствовании работ по снижению доз облучения при медицинских процедурах»
3. Приказ № 360 от 14.09.2001г. «Об утверждении перечня лучевых методов исследования».
Лучевая диагностика включает:
1. Методы на основе использования рентгеновских лучей.
1). Флюорография
2). Традиционное рентгенологическое исследование
3). РКТ
4). Ангиография
2. Методы на основе использования УЗИ-излучения 1).УЗИ
2). Эхокардиография
3). Допплерография
3. Методы на основе ядерно-магнитного резонанса. 1).МРТ
2). MP – спектроскопия
4. Методы на основе использования РФП (радиофармакологических препаратов):
1). Радионуклидная диагностика
2). Позитронно - эмиссионная томография - ПЭТ
3). Радиоиммунные исследования
5.Методы на основе инфракрасного излучения (термофафия)
6.Интервенционная радиология
Общим для всех методов исследования является использование различных излучений (рентгеновских, гамма лучей, УЗ, радиоволн).
Основными компонентами лучевой диагностики являются: 1) источник излучения, 2) воспринимающие устройство.
Диагностическое изображение обычно представляет собой сочетание различных оттенков сгрого цвета, пропорционально интенсивности излучения, попавшею на воспринимающее устройство.
Картина внутренней структуры исследования объекта может быть:
1) аналоговой (на пленке или экране)
2) цифровой (интенсивность излучения выражается в виде числовых величин).
Все эти методы объединены в общую специальность - лучевая диагностика (медицинская радиология, диагностическая радиология), а врачи - врачи радиологи (за рубежом), а у нас пока неофициально «врач лучевой диагност»,
В РФ термин лучевая диагностика является официальным только для обозначения медицинской специальности (14.00.19), аналогичное название носят и кафедры. В практическом здравоохранении название является условным и объединяет 3 самостоятельных специальности: рентгенология, УЗИ-диагностика и радиология (радионуклидная диагностика и лучевая терапия).
Медицинская термография - метод регистрации естественного теплового (инфракрасного излучения). Главными факторами, определяющими температуру тела, являются: интенсивность кровообращения и интенсивность обменных процессов. Каждая область имеет свой «тепловой рельеф». При помощи специальной аппаратуры (тепловизеров) инфракрасное излучение улавливается и преобразуется в видимое изображение.
Подготовка пациента: отмена лекарств, влияющих на кровообращение и уровень обменных процессов, запрещение курения за 4 часа до обследования. На коже не должно быть мазей, кремов и др.
Гипертермия характерна для воспалительных процессов, злокачественных опухолей, тромбофлебитов; гипотермия наблюдается при ангиоспазмах, расстройствах кровообращения при профессиональных заболеваниях (вибрационная болезнь, нарушение мозгового кровообращения и др.).
Метод прост и безвреден. Однако диагностические возможности метода ограничены.
Одним из современных методов широко распространенным является УЗИ (ультразвуковая биолокация). Метод получил широкое распространение из-за простоты и общедоступности, высокой информативности. При этом используется частота звуковых колебаний от 1 до 20 мегагерц (человек слышит звук в пределах частот от 20 до 20000 герц). Пучок ультразвуковых колебаний направляется на исследуемую область, который частично или полностью отражается от всех поверхностей и включений, различающихся по проводимости звука. Отраженные волны улавливаются датчиком, обрабатываются электронным устройством и преобразуются в одно (эхография) или двухмерное (сонография) изображение.
На основании различия в звуковой плотности картины принимается то или иное диагностическое решение. По сканограммам можно судить о топографии, форме, величине исследуемого органа, а также патологических изменениях в нем. Будучи безвредным для организма и обслуживающего персонала метод нашел широкое применение в акушерско-гинекологической практике, при исследовании печени и желчных путей, органов забрюшинного пространства и других органов и систем.
Бурно развиваются радионуклидные методы изображения различных органов и тканей человека. Сущность метода - в организм вводятся радионуклиды или меченные ими соединения (РФП), которые избирательно накапливаются в соответствующих органах. При этом радионуклиды испускают гаммакванты, которые улавливаются датчиками, а затем регистрируются специальными приборами (сканерами, гаммакамерой и др.), что позволяет судить о положении, форме, величине органа, распределении препарата, быстроте его выведения и т.д.
В рамках лучевой диагностики складывается новое перспективное направление - радиологическая биохимия (радиоимун-ный метод). При этом изучаются гормоны, ферменты, опухолевые маркеры, лекарственные препараты и др. Сегодня in vitro определяют более 400 биологически активных веществ;. Успешно развиваются способы активационного анализа - определение концентрации стабильных нуклидов в биологических образцах или в организме в целом (облученных быстрыми нейтронами).
Ведущая роль в получении изображения органов и систем человека принадлежит рентгенологическому исследованию.
С открытием рентгеновских лучей (1895 год) осуществилась вековая мечта врача — заглянуть внутрь живого организма, изучить его строение, работу, распознать заболевание.
В настоящее время существует большое количество методов рентгенологического исследования (бесконтрастных и с использованием искусственного контрастирования), позволяющих исследовать практически все органы и системы человека.
В последнее время в практику все шире внедряются цифровые технологии получения изображения (малодозовая цифровая рентгенография), плоские панели - детекторы для РЭОП, детекторы рентгеновского изображения на основе аморфного кремния и др.).
Преимущества цифровых технологий в рентгенологии: снижение дозы облучения в 50-100 раз, высокая разрешающая способность (визуализируются объекты величиной 0,3 мм), исключается пленочная технология, увеличивается пропускная способность кабинета, формируется электронный архив с быстрым доступом, возможность передачи изображения на расстояние.
С рентгенологией тесно связана интервенционная радиология - сочетание в одной процедуре диагностических и лечебных мероприятий.
Основные направления: 1) рентгеноваскулярные вмешательства (расширение суженных артерий, закупорка сосудов при гемангиомах, протезирование сосудов, остановка кровотечений, удаление инородных тел, подведение лекарственных веществ к опухоли), 2) экстравазальные вмешательства (катетеризация бронхиального дерева, пункция легкого, средостения, декомпрессия при обтурационной желтухе, введение препаратов, растворяющих камни и др.).
Компьютерная томография. До недавнего времени казалось, что методический арсенал рентгенологии исчерпан. Однако родилась компьютерная томография (КТ), совершившая революционный переворот в рентгенодиагностике. Спустя почти 80 лет после Нобелевской премии, полученной Рентгеном (1901) в 1979 году этой же премии удостоились Хаунсфильд и Кормак на том же участке научного фронта - за создание компьютерного томографа. Нобелевская премия за создание прибора! Явление довольно редкое в науке. А все дело в том, что возможности метода вполне сравнимы с революционным открытием Рентгена.
Недостаток рентгенологического метода - плоскостное изображение и суммарный эффект. При КТ образ объекта математически воссоздается по бесчисленному набору его проекций. Таким объектом является тонкий срез. При этом он просвечивается со всех сторон и изображение его регистрируется ог-ромным количеством высокочувствительных датчиков (несколько сотен). Полученная информация обрабатывается на ЭВМ. Детекторы КТ очень чувствительны. Они улавливают разницу в плотности структур менее одного процента (при обычной рентгенографии - 15-20%). Отсюда, можно получить на снимках изображение различных структур головного мозга, печени, поджелудочной железы и ряда других органов.
Преимущества КТ: 1) высокая разрешающая способность, 2) исследование тончайшего среза - 3-5 мм, 3) возможность количественной оценки плотности от -1000 до + 1000 единиц Хаунсфильда.
В настоящее время появились спиральные компьютерные томографы, обеспечивающие обследование всего тела и получение томограмм при обычном режиме работы за одну секунду и временем реконструкции изображения от 3 до 4 секунд. За создание этих аппаратов ученые были удостоены Нобелевской премии. Появились и передвижные КТ.
Магнитно-резонансная томография основана на ядерно-магнитном резонансе. В отличие от рентгеновского аппарата магнитный томограф не «просвечивает» тело лучами, а заставляет сами органы посылать радиосигналы, которые ЭВМ обрабатывая, формирует изображение.
Принципы работы. Объект помещается в постоянное магнитное поле, которое создается уникальным электромагнитом в виде 4-х огромных колец соединенных вместе. На кушетке пациент вдвигается в этот туннель. Включается мощное постоянное электромагнитное поле. При этом протоны атомов водорода, содержащихся в тканях, ориентируются строго по ходу силовых линий (в обычных условиях они ориентированы в пространстве беспорядочно). Затем включается высокочастотное электромагнитное поле. Теперь ядра, возвращаясь в исходное состояние (положение), испускают крохотные радиосигналы. Это и гсть эффект ЯМР. Компьютер регистрирует эти сигналы и распределение протонов, формирует изображение на телеэкране.
Радиосигналы неодинаковы и зависят от расположения атома и его окружения. Атомы болезненных участков испускают радиосигнал, отличающийся от излучений соседних здоровых тканей. Разрешающая способность аппаратов чрезвычайно велика. Например, хорошо видны отдельные структуры головного мозга (ствол, полушарие, серое, белое вещество, желудочковая система и т.д.). Преимущества МРТ перед РКТ:
1) MP-томография не связана с опасностью повреждения тканей, в отличие от рентгенологического исследования.
2) Сканирование радиоволнами позволяет менять расположение изучаемого сечения в тел»; без изменения положения пациента.
3) Изображение не только поперечное, но и в любых других сечениях.
4) Разрешающая способность выше, чем при КТ.
Препятствием к МР-томографии являются металлические тела (клипсы после операции, водители сердечного ритма, электронейростимуляторы)
Современные тенденции развития лучевой диагностики
1. Совершенствование методов на основе компьютерных технологий
2. Расширение сферы применения новых высокотехнологических методов -УЗИ, МРТ, РКТ, ПЭТ.
4. Замена трудоемких и инвазивных методов менее опасными.
5. Максимальное сокращение лучевых нагрузок на пациентов и персонал.
Всестороннее развитие интервенционной радиологии, интеграция с другими медицинскими специальностями.
Первое направление - прорыв в области компьютерных технологий, что позволило создать широкий спектр аппаратов для цифровой дигитальной рентгенографии, УЗИ, МРТ до использования трехмерных изображений.
Требования, предъявляемые к радионуклидным лабораториям:
Одна лаборатория - на 200-300 тысяч населения. Преимущественно ее следует размещать в терапевтических клиниках.
1. Необходимо размещать лабораторию в отдельном здании, построенному по типовому проекту с охранной санитарной зоной вокруг. На территории последней нельзя строить детские учреждения и пищеблоки.
2. Радионуклидная лаборатория должна иметь определенный набор помещений (хранилище РФП, фасовочная, генераторная, моечная, процедурная, санпропускник).
3. Предусмотрена специальная вентиляция (пятикратная смена воздуха при использовании радиоактивных газов), канализация с рядом отстойников, в которых выдерживаются отходы не менее десяти периодов полураспада.
4. Должна проводиться ежедневная влажная уборка помещений.
В ближайшие годы, а иногда и сегодня, основным местом работы врача станет персональный компьютер, на экран которого будет выводиться информация с данными электронной истории болезни.
Второе направление связано с широким распространением КТ, МРТ, ПЭТ, разработка все новых направлений их использования. Не от простого к сложному, а выбор наиболее эффективных методик. Например, выявление опухолей, метастазов головного и спинного мозга - МРТ, метастазов - ПЭТ; почечной колики - спиральная КТ.
Третье направление - повсеместное устранение инвазивных методов и методов связанных с большой лучевой нагрузкой. В связи с этим, уже сегодня практически исчезли миелография, пневмомедиасти-нография, в/в холеграфия и др. Сокращаются показания к ангиографии.
Четвертое направление - максимальное снижение доз ионизирующего излучения за счет: I) замены рентгеновских излучателей МРТ, УЗИ , например при исследовании головного и спинного мозга, желчных путей и др. Но делать это надо обдуманно, чтобы не случилась ситуация подобно рентгенологическому исследованию ЖКТ, где все переложено на ФГС, хотя при эндофитных раках больше информации при рентгенологическом исследовании. Сегодня и УЗИ не может заменить маммографию. 2) максимальное снижение доз при проведении самих рентгенологических исследований за счет исключения дублирования снимков, улучшения техники, пленки и др.
Пятое направление - бурное развитие интервенционной радиологии и широкое привлечение лучевых диагностов к этой работе (ангиография, пункция абсцессов, опухолей и др.).
Особенности отдельных методов диагностики на современном этапе
В традиционной рентгенологии принципиально изменилась компоновка рентгеновских аппаратов - установка на три рабочих места (снимки, просвечивание и томография) заменяются на телеуправляемое одно рабочее место. Увеличилось число специальных аппаратов (маммографы, для ангиографии, стоматологии, палатные и др.). Широкое распространение получили устройства для цифровой рентгенографии, УРИ, субтракционной дигитальной ангиографии, фотостимулирующие кассеты. Возникла и развивается цифровая и компьютерная радиология, что приводит к сокращению времени обследования, устранение фотолабораторного процесса, созданию компактных цифровых архивов, развитию телерадиологии, созданию внутри - и межбольничных радиологических сетей.
УЗИ - технологии обогатились новыми программами цифровой обработки эхосигнала, интенсивно развивается допплерография оценки кровотока. УЗИ стали основными при исследовании живота, сердца, таза, мягких тканей конечностей, возрастает значение метода в исследовании щитовидной железы, молочных желез, внутриполостных исследования.
В области ангиографии интенсивно развиваются интервенционные технологии (балонная дилятация, установка стентов, ангиопластика и др.)
В РКТ - доминирующее значение приобретает спиральное сканирование, многослойное КТ, КТ- ангиография.
МРТ обогатилась установками открытого типа с напряженностью поля 0,3 - 0,5 Т и с высокой напряженностью (1,7-3 ОТ), функциональными методиками исследования головного мозга.
В радионуклидной диагностике появился ряд новых РФП, утвердился в клинике ПЭТ (онкология и кардиология).
Формируется телемедицина. Ее задача - электронное архивирование и передача данных о пациентах на расстояние.
Структура лучевых методов исследования меняется. Традиционные рентгенологические исследования, проверочная и диагностическая флюорография, УЗИ являются методами первичной диагностики и в основном ориентированы на исследование органов грудной и брюшной полости, костно-суставной системы. К уточняющим методам относятся МРТ, КТ, радионуклидное исследование, особенно при исследовании костей, зубочелюстной области, головы и спинного мозга.
В настоящее время разработано свыше 400 соединений различной химической природы. Метод на порядок чувствительнее лабораторных биохимических исследований. Сегодня радиоимунный анализ широко используется в эндокринологии (диагностика сахарного диабета), в онкологии (поиск раковых маркеров), в кардиологии (диагностика инфаркта миокарда), в педиатрии (при нарушении развития ребенка), в акушерстве и гинекологии (бесплодие, нарушение развития плода), в аллергологии, в токсикологии и др.
В промышленно развитых странах сейчас основной акцент делается на организацию в крупных городах центров позитронной эмиссионной томографии (ПЭТ), включающей в свой состав кроме позитронно-эмиссионного томографа, еще и малогабаритный циклотрон для производства на месте позитронно-излучающих ультракороткоживущих радионуклидов. Где нет малогабаритных циклотронов изотоп (F-18 с периодом полураспада около 2 часов) получают из своих региональных центров по производству радионуклидов или используют генераторы (Rb-82, Ga-68, Cu-62).
В настоящее время радионуклидные методы исследования используют и с профилактической целью для выявления скрыто протекающих заболеваний. Так, любая головная боль требует исследования мозга с пертехнетатом-Тс-99ш. Такого рода скрининг позволяет исключить опухоль и очаги кровоизлияния. Уменьшенная почка, обнаруженная в детстве при сцинтиграфии, должна быть удалена с целью профилактики злокачественной гипертонии. Капелька крови, взятая из пяточки ребенка, позволяет установить количество гормонов щитовидной железы.
Методы радионуклидных исследований делятся на: а) исследование живого человека; б) исследование крови, секретов, экскретов и прочих биологических проб.
К методам in vivo относятся:
1. Радиометрия (всего тела или части его) - определение активности части тела или органа. Активность регистрируется в виде цифр. Примером может служить исследование щитовидной железы, ее активности.
2. Радиография (гаммахронография) - на радиографе или гаммакамере определяется динамика радиоактивности в виде кривых (гепаторадиография, радиоренография).
3. Гамматопография (на сканере или гаммакамере) — распределение активности в органе, что позволяет судить о положении, форме, размерах, равномерности накопления препарата.
4. Радиоимунный анализ (радиоконкурентный) - в пробирке определяются гормоны, ферменты, лекарственные средства и прочее. При этом РФП вводится в пробирку, например с плазмой крови пациента. В основе метода - конкуренция между веществом меченым радионуклидом и его аналогом в пробирке за комплексирование (соединение) со специфическим антителом. Антигеном является биохимическое вещество, которое следует определить (гормон, фермент, лекарственное вещество). Для анализа необходимо иметь: 1) исследуемое вещество (гормон, фермент); 2) меченый его аналог: меткой обычно служит 1-125 с периодом полураспада 60 дней или тритий с периодом полураспада 12 лет; 3) специфическую воспринимающую систему, являющуюся предметом «конкуренции» между искомым веществом и его меченым аналогом (антитело); 4) систему разделения, отделяющую связанное радиоактивное вещество от несвязанного (активированный уголь, ионообменные смолы и др.).
ЛУЧЕВОЕ ИССЛЕДОВАНИЕ ЛЕГКИХ
Легкие - один из самых частых объектов лучевого исследования. О важной роли рентгенологического исследования в изучении морфологии органов дыхания и распознавании различных заболеваний свидетельствует тот факт, что принятые классификации многих патологических процессов основаны на рентгенологических данных (пневмонии, туберкулез, рак легкого, саркоидоз и др.). Часто скрыто протекающие заболевания, такие как туберкулез, рак и др. выявляются при проверочных флюорографических обследованиях. С появлением компьютерной томографии значение рентгенологического исследования легких возросло. Важное место в исследовании легочного кровотока принадлежит радионуклидному исследованию. Показания к лучевому исследованию легких весьма широки (кашель, выделение мокроты, одышка, повышение температуры и др.).
Лучевое исследование позволяет диагностировать заболевание, уточнить локализацию и распространенность процесса, следить за динамикой, контролировать выздоровление, обнаружить осложнения.
Ведущая роль в исследовании легких принадлежит рентгенологическому исследованию. Среди методов исследования следует отметить рентгеноскопию и рентгенографию, позволяющие оценить как морфологические, так и функциональные изменения. Методики просты и не обременительны для больного, высоко информативны, общедоступны. Обычно выполняются обзорные снимки в прямой и боковой проекциях, прицельные снимки, суперэкспонированные (сверхжесткие, иногда заменяющие томографию). Для выявления скопления жидкости в плевральной полости выполняются снимки в латеропозиции на больном боку. С целью уточнения деталей (характер контуров, гомогенность тени, состояние окружающих тканей и пр.), выполняется томография. Для массового исследования органов грудной полости прибегают к флюорографии. Из контрастных методов следует назвать бронхографию (для выявления бронхоэктазии), ангиопульмонографию (для определения распространенности процесса, например при раке легкого, для выявления тромбоэмболии ветвей легочной артерии).
Рентгеноанатомия. Анализ рентгенологических данных органов грудной полости проводится в определенной последовательности. Оценивается:
1) качество снимка (правильность установки пациента, степень экспонирования пленки, объем захвата и пр.),
2) состояние грудной клетки в целом (форма, величина, симметричность легочных полей, положение органов средостения),
3) состояние скелета, образующего грудную клетку (плечевого пояса, ребер, позвоночника, ключиц),
4) мягких тканей (кожная полоска над ключицами, тень и грудиноключичнососковых мышц, молочных желез),
5) состояние диафрагмы (положение, форма, контуры, синусы),
6) состояние корней легких (положение, форма, ширина, состояние наружного кошура, структура),
7) состояние легочных полей (размеры, симметричность, легочный рисунок, прозрачность),
8) состояние органов средостения. Необходимо изучить бронхолегочные сегменты (название, локализация).
Рентгеносемиотика заболеваний легких чрезвычайно разнообразна. Однако это многообразие можно свести к нескольким группам признаков.
1. Морфологические признаки:
1) затемнение
2) просветление
3) сочетание затемнения и просветления
4) изменения легочного рисунка
5) патология корней
2. Функциональные признаки:
1) изменение прозрачности легочной ткани в фазе вдоха и выдоха
2) подвижность диафрагмы при дыхании
3) парадоксальные движения диафрагмы
4) перемещение срединной тени в фазе вдоха и выдоха Обнаружив патологические изменения, следует решить каким заболеванием они обусловлены. Сделать это «с первого взгляда» обычно невозможно, если нет патогномоничных симптомов (игла, значок и т.д.). Задача облегчается, если выделить рентгенологический синдром. Различают следующие синдромы:
1.Синдром тотального или субтотального затемнения:
1) внутрилегочные затемнения (пневмония, ателектаз, цирроз, грыжа пищеводного отверстия диафрагмы),
2) внелегочные затемнения (экссудативный плеврит, шварты). В основу разграничения положены два признака: структура затемнения и положение органов средостения.
Например, тень однородная, средостение смещено в сторону поражения - ателектаз; тень однородная, сердце смещено в противоположную сторону - экссудативный плеврит.
2.Синдром ограниченных затемнений:
1) внутрилегочные (доля, сегмент, субсегмент),
2) внелегочные (плевральный выпот, изменения ребер и органов средостения и др.).
Ограниченные затемнения - самый трудный путь диагностической расшифровки («ох, не легкие - эти легкие!»). Они встречаются при пневмониях, туберкулезе, раке, ателектазе, тромбоэмболии ветвей легочной артерии и др. Следовательно, обнаруженную тень следует оценить с точки зрения положения, формы, размеров, характера контуров, интенсивности и гомогенности пр.
Синдром округлого (шаровидного) затемнения - в виде одного или нескольких фокусов, имеющих более или менее округлую форму размером больше одного см. Они могут быть однородными и неоднородными (за счет распада и обызвествлений). Тень округлой формы должна определяться обязательно в двух проекциях.
По локализации округлые тени могут быть:
1) внутрилегочными (воспалительный инфильтрат, опухоль, кисты и др.) и
2) внелегочные, исходящие из диафрагмы, грудной стенки, средостения.
Сегодня насчитывается около 200 заболеваний,, обусловливающих круглую тень в легких. Большинство из них встречается редко.
Поэтому, чаще всего приходится проводить дифференциальную диагностику со следующими заболеваниями:
1) периферический рак легкого,
2) туберкулома,
3) доброкачественная опухоль,
4) ретенционная и паразитарная кисты,
5) абсцесс легкого и фокусы хронической пневмонии,
6) солидарный метастаз. На долю этих заболеваний приходится до 95% округлых теней.
При анализе круглой тени следует учитывать локализацию, структуру, характер контуров, состояние легочной ткани вокруг, наличие или отсутствие «дорожки» к корню и т.д.
4.0чаговые (очаговоподобные) затемнения - это округлые или неправильной формы образования диаметром от 3 мм до 1,5 см. Природа их разнообразна (воспалительная, опухолевая, рубцовые изменения, участки кровоизлияний, ателектазы и др.). Они могут быть одиночными, множественными и диссеминированными и различаться по величине, локализации, интенсивности, характеру контуров, изменению легочного рисунка. Так, при локализации очагов в облаете верхушки легкого, подключичного пространства следует думать о туберкулезе. Неровные контуры обычно характеризуют воспалительные процессы, периферический рак, фокусы хронической пневмонии и др. Интенсивность очагов обычно сравнивается с легочным рисунком, ребром, срединной тенью. В дифференциальной диагностике учитывается и динамика (увеличение или уменьшение количества очагов).
Очаговые тени чаще всего встречаются при туберкулезе, саркоидозе, пневмонии, метастазах злокачественных опухолей, пневмокониозе, пневмосклерозе и др.
5.Синдром диссеминации - распространение в легких множественных очаговых теней. Сегодня насчитывается свыше 150 заболеваний, которые могут обусловить этот синдром. Основными разграничительными критериями являются:
1) размеры очагов - милиарные (1-2 мм), мелкие (3-4 мм), средние (5-8 мм) и крупные (9-12 мм),
2) клинические проявления,
3) преимущественная локализация,
4) динамика.
Милиарная диссеминация характерна для острого диссеминированного (милиарного) туберкулеза, узлового пневмокониоза, саркоидоза, канцероматоза, гемосидероза, гистиоцитоза и др.
При оценке рентгенологической картины следует учитывать локализацию, равномерность диссеминации, состояние легочного рисунка и др.
Диссеминация с размером очагов свыше 5 мм сводит диагностическую задачу к разграничению очаговой пневмонии, опухолевой диссеминации, пневмосклерозу.
Диагностические ошибки при синдроме диссеминации довольно часты и составляют 70-80%, в связи с чем, адекватная терапия запаздывает. В настоящее время диссеминированные процессы делят на: 1) инфекционные (туберкулез, микозы, паразитарные заболевания, ВИЧ-инфекция, респираторный дистрес синдром), 2) неинфекционные (пневмокониозы, аллергические васкулиты, лекарственные изменения, радиационные последствия, посттрансплантационные изменения и пр.).
Около половины всех диссеминированных заболеваний легких относятся к процессам с неустановленной этиологией. Так например, идеопатический фиброзирующий альвеолит, саркоидоз, гистиоцитоз, идеопатический гемосидероз, васкулиты. При некоторых системных заболеваниях также наблюдается синдром диссеминации (ревматоидные болезни, цирроз печени, гемолитические анемии, болезни сердца, почек и др.).
В последнее время в дифференциальной диагностике диссеминированных процессов в легких большую помощь оказывает рентгеновская компьютерная томография (РКТ)
6. Синдром просветлений. Просветления в легких делятся на ограниченные (полостные образования - кольцевидные тени) и диффузные. Диффузные в свою очередь подразделяются на бесструктурные (пневмоторакс) и структурные (эмфизема легких).
Синдром кольцевидной тени (просветления) проявляется в виде замкнутого кольца (в двух проекциях). При обнаружении кольцевидного просветления необходимо установить локализацию, толщину стенок, состояние легочной ткани вокруг. Отсюда, различают:
1) тонкостенные полости к которым относятся бронхиальные кисты, кистевидные бронхоэктазы, постпневмонические (ложные) кисты, санированные туберкулезные каверны, эмфизематозные буллы, полости при стафилококковой пневмонии;
2) неравномерно толстые стенки полости (распадающийся периферический рак);
3) равномерно толстые стенки полости (туберкулезные каверны, абсцесс легкого).
7. Патология легочного рисунка. Легочный рисунок образован разветвлениями легочной артерии и представляется линейными тенями, располагающимися радиально и не доходящими до реберного края на 1-2 см. Патологически измененный легочный рисунок может быть усиленным и обедненным.
1) Усиление легочного рисунка проявляется в виде грубых дополнительных тяжистых образований, часто беспорядочно располагающихся. Нередко он становится петлистым, ячеистым, хаотичным.
Усиление и обогащение легочного рисунка (на единицу площади легочной ткани приходится увеличение число элементов легочного рисунка) наблюдается при артериальном полнокровии легких, застое в легких, пневмосклерозе. Усиление и деформация легочного рисунка возможно:
а) по мелкоячеистому типу и б) по крупноячеистому (пневмосклероз, бронхоэктазы, кистевидное легкое).
Усиление легочного рисунка может быть ограниченным (пневмофиброз) и диффузный. Последний встречается при фиброзирующих альвеолитах, саркоидозе, туберкулезе, пневмокониозе, гистиоцитозе X, при опухолях (раковый лимфангит), васкулитах, лучевых поражениях и пр.
Обеднение легочного рисунка. При этом на единицу площади легкого приходится меньше элементов легочного рисунка. Обеднение легочного рисунка наблюдается при компенсаторной эмфиземе, недоразвитии артериальной сети, вентильной закупорке бронха, прогрессирующей дистрофии легких (исчезающее легкое) и др.
Исчезновение легочного рисунка наблюдается при ателектазе и пневмотораксе.
8.Патология корней. Различают нормальный корень, инфильтрированный корень, застойные корни, корни с увеличенными лимфоузлами и фиброз неизмененные корни.
Нормальный корень располагается от 2 до 4 ребра, имеет четкий наружный контур, структура неоднородная, ширина не превышает 1,5 см.
В основе дифференциальной диагностики патологически измененных корней учитываются следующие моменты:
1) одно или двусторонность поражения,
2) изменения в легких,
3) клиническая картина (возраст, СОЭ, изменения в крови и др.).
Инфильтрированный корень представляется расширенным, бесструктурным с нечетким наружным контуром. Встречается при воспалительных заболеваниях легких и опухолях.
Точно также выглядят застойные корни. Однако, при этом процесс двухсторонний и обычно имеются изменения со стороны сердца.
Корни с увеличенными лимфоузлами бесструктурны, расширены, с четкой наружной границей. Иногда имеет место полицикличность, симптом «кулис». Встречаются при системных заболеваниях крови, метастазах злокачественных опухолей, саркоидозе, туберкулезе и др.
Фиброзно измененный корень структурен, обычно смещен, часто имеет обызвествленные лимфатические узлы и, как правило, наблюдаются фиброзные изменения в легких.
9. Сочетание затемнения и просветления - синдром, который наблюдается при наличии полости распада гнойного, казеозного или опухолевого характера. Чаще всего он встречается, при полостной форме рака легкого, туберкулезной каверне, при распадающемся туберкулезном инфильтрате, абсцессе легкого, нагноившихся кистах, бронхоэктазах и др.
10. Патология бронхов:
1) нарушение бронхиальной проходимости при опухолях, инородных телах. Различают три степени нарушения бронхиальной проходимости (гиповентиляция, вентельная закупорка, ателектаз),
2) бронхоэктазия (цилиндрические, мешотчатые и смешанные бронхоэктазы),
3) деформация бронхов (при пневмосклерозе, туберкулезе и др. заболеваниях).
ЛУЧЕВОЕ ИССЛЕДОВАНИЕ СЕРДЦА И МАГИСТРАЛЬНЫХ СОСУДОВ
Лучевая диагностика заболеваний сердца и крупных сосудов прошла долгий путь своего развития, полный триумфа и драматизма.
Большая диагностическая роль рентгенокардиологии никогда не вызывала сомнений. Но это была ее юность, пора одиночества. В последние 15-20 лет произошла технологическая революция в диагностической радиологии. Так, в 70-ые годы были созданы УЗ-приборы, позволившие заглянуть внутрь полостей сердца, изучить состояние капанного аппарата. Позднее динамическая сцинтиграфия позволила судить о сократимости отдельных сегментов сердца, о характере кровотока. В 80-ые годы в практику кардиологии вошли компьютеризационные способы получения изображения: дигитальная коронаро- и вентрикулография, КТ, МРТ, катетеризация сердца.
В последнее время стало распространяться мнение о том, что традиционное рентгенологическое исследование сердца изжило себя как методика обследования больных кардиологического профиля, так как основными методами исследования сердца является ЭКГ, УЗИ, МРТ. Тем не менее, в оценке легочной гемодинамики, отражающей функциональное состояние миокарда, рентгенологическое исследование сохраняет свои преимущества. Она не только позволяет выявить изменения сосудов малого круга кровообращения, но и составитпредставление о камерах сердца, приведших к этим изменениям.
Таким образом, лучевое исследование сердца и крупных сосудов включает:
неинвгзивные методы (рентгеноскопия и рентгенография, УЗИ, КТ, МРТ)
инвазивные методы (ангиокардиография, вентрикулография, коронарография, аортография и др.)
Радионуклидные методы позволяют судить о гемодинамике. Следовательно, сегодня лучевая диагностика в кардиологии переживает свою зрелость.
Рентгенологическое исследование сердца и магистральных сосудов.
Значение метода. Рентгенологическое исследование является частью общего клинического исследования больного. Цель установить диагноз и характер гемодинамических нарушений (от этого зависит выбор метода лечения - консервативного, оперативного). В связи с применением УРИ в сочетании с катетеризацией сердца и ангиографией открылись широкие перспективы в изучении нарушений кровообращения.
Методики исследования
1) Рентгеноскопия - методика, с которой начинается исследование. Она позволяет составить представление о морфологии и дать функциональную характеристику тени сердца в целом и отдельных ее полостей, а также крупных сосудов.
2) Рентгенография объективизирует морфологические данные, полученные при рентгеноскопии. Ее стандартные проекции:
а) передняя прямая
б) правая передняя косая (45°)
в) левая передняя косая (45°)
г) левая боковая
Признаки косых проекций:
1) Правая косая - треугольная форма сердца, газовый пузырь желудка спереди, по заднему контуру сверху располагается восходящая аорта, левое предсердие, внизу - правое предсердие; по переднему контуру сверху определяется аорта, затем идет конус легочной артерии и, нищ - дуга левого желудочка.
2) Левая косая - форма овальная, желудочный пузырь сзади, между позвоночником и сердцем, хорошо видна бифуркация трахеи и определяются все отделы грудной аорты. Все камеры сердца выходят на контур - сверху предсердия, внизу желудочки.
3) Исследование сердца с контрастированным пищеводом (пищевод в норме располагается вертикально и на значительном протяжении прилежит к дуге левого предсердия, что позволяет ориентироваться о его состоянии). При увеличении левого предсердия наблюдается оттеснение пищевода по дуге большого или малого радиуса.
4) Томография - уточняет морфологические особенности сердца и крупных сосудов.
5) Рентгенокимография, электрокимография - методы функционального исследования сократительной способности миокарда.
6) Рентгенокинематография - киносъемка работы сердца.
7) Катетеризация полостей сердца (определение насыщения крови кислородом, измерение давления, определение минутного и ударного объема сердца).
8) Ангиокардиография с большей точностью определяет анатомические и гемодинамические нарушения при пороках сердца (особенно врожденных).
План изучения данных рентгенологического исследования
1. Изучение скелета грудной клетки (обращается внимание на аномалии развития ребер, позвоночника, искривления последнего, «узуры» ребер при коарктации аорты, признаки эмфиземы легких и др.).
2. Исследование диафрагмы (положение, подвижность, скопление жидкости в синусах).
3. Изучение гемодинамики малого круга кровообращения (степень выбухания конуса легочной артерии, состояние корней легких и легочного рисунка, наличие плевральных линий и линий Керли, очагово - инфильтратавные тени, гемосидероз).
4. Рентгеноморфологическое исследование сердечнососудистой тени
а) положение сердца (косое, вертикальное и горизонтальное).
б) форма сердца (овальная, митральная, треугольная, аортальная)
в) размеры сердца. Справа на 1-1,5 см от края позвоночника, слева - на 1-1,5 см не доходя до срединно-ключичной линии. О верхней границе судим по так называемой талии сердца.
5. Определение функциональных особенностей сердца и крупных сосудов (пульсация, симптом «коромысла», систолические смещения пищевода и др.).
Приобретенные пороки сердца
Актуальность. Внедрение в хирургическую практику оперативного лечения приобретенных пороков потребовало от рентгенологов их уточнения, (стеноз, недостаточность, их преобладание, характер нарушения гемодинамики).
Причины: практически все приобретенные пороки - следствие ревматизма, редко-септического эндокардита; коллагенозы, травма, атеросклероз, сифилис также могут привести к пороку сердца.
Недостаточность митрального клапана встречается чаще, чем стеноз. При этом происходит сморщивание створок клапана. Нарушение гемодинамики связано с отсутствием периода замкнутых клапанов. Часть крови во время систолы желудочков возвращается в левое предсердие. Последнее расширяется. Во время диастолы в левый желудочек возвращается большее количество крови, в связи с чем последнему приходится работать в усиленном режиме и он гипертрофируется. При значительной степени недостаточности левое предсердие резко расширяется, стенка его истончается иногда до тонкого листка, через который просвечивает кровь.
Нарушение внутрисердечной гемодинамики при этом пороке наблюдается при забросе 20-30мл крови в левое предсердие. Долгое время значительных изменений нарушения кровообращения в малом круге не наблюдается. Застой в легких возникает лишь при далеко зашедших стадиях - при недостаточности левого желудочка.
Рентгеновская семиотика.
Форма сердца митральная (талия сглажена или выбухает). Основной признак-увеличение левого предсердия иногда с выходом на правый контур в виде дополнительной третьей дуги (симптом «перекреста»). Степень увеличения левого предсердия определяется в первом косом положении по отношению к позвоночнику (1-III).
Контрастированный пищевод отклоняется по дуге большого радиуса (более 6-7см). Имеет место расширение угла бифуркации трахеи (до 180), сужение просвета правого главного бронха. Третья дуга по левому контуру преобладает над второй. Аорта нормальных размеров, хорошо заполняется. Из рентгенофункциональных симптомов обращает на себя внимание симптом «коромысла» (систолической экспансии), систолическое смещение пищевода, симптом Реслера (передаточная пульсация правого корня.
После оперативного вмешательства все изменения ликвидируются.
Стеноз левого митрального клапана (сращение створок).
Гемодинамические нарушения наблюдаются с уменьшением митрального отверстия более чем на половину (около одного кв. см.). В норме митральное отверстие 4-6 кв. см., давление в полости левого предсердия 10 мм рт.ст. При стенозе давление повышается в 1,5-2 раза. Сужение митрального отверстия препятствует изгнанию крови из левого предсердия в левый желудочек, давление в котором повышается до 15-25мм рт.ст., что затрудняет отток крови из малого круга кровообращения. Возрастает давление в легочной артерии (это пассивная гипертензия). Позже наблюдается активная гипертензия в результате раздражения барорецепторов эндокарда левого предсердия и устья легочных вен. В результате этого развивается рефлекторный спазм артериол и более крупных артерий - рефлекс Китаева. Это второй барьер на пути тока крови (первый - сужение митрального клапана). При этом возрастает нагрузка на правый желудочек. Длительный спазм артерий приводит к кардиогенному пневмофиброзу.
Клиника. Слабость, одышка, кашель, кровохарканье. Рентгеносемиотика. Самым ранним и характерным признаком является нарушение гемодинамики малого круга кровообращения - застой в легких, (расширение корней, усиление легочного рисунка, линии Керли, перегородочные линии, гемосидероз).
Рентгеновская симптоматика. Сердце имеет митральную конфигурацию за счет резкого выбухания конуса легочной артерии (вторая дуга преобладает над третьей). Имеет место гипертрофия левого предсердия. Коитрастированный пищевод отклоняется по дуге малого радиуса. Отмечается смещение вверх главных бронхов (больше левого), увеличение угла бифуркации трахеи. Правый желудочек увеличен, левый - как правило, небольших размеров. Аорта гипопластична. Сокращения сердца спокойные. Часто наблюдается обызвествление клапанов. При катетеризации отмечается повышение давления (в 1-2 раза выше нормы).
Недостаточность клапанов аорты
Нарушение гемодинамики при этом пороке сердца сводится к неполному смыканию створок клапанов аорты, что во время диастолы приводит к возврату в левый желудочек от 5 до 50% крови. Результатом является расширение левого желудочка за гипертрофии. Одновременно диффузно расширяется и аорта.
В клинической картине отмечаются сердцебиения, боли в сердце, обмороки и головокружения. Разница в систолическом и диастолическом давлениях велика (систолическое давление 160 мм рт ст, диастолическое - низкое, иногда доходит до 0). Наблюдается симптом «пляски» каротид, симптом Мюсси, бледность кожных покровов.
Рентгеносемиотика. Наблюдается аортальная конфигурация сердца (глубокая подчеркнутая талия), увеличение левого желудочка, закругление его верхушки. Равномерно расширяются и все отделы грудной аорты. Из ренттенофункциональных признаков обращает на себя внимание увеличение амплитуды сердечных сокращений и усиление пульсации аорты (пульс celer et altus). Степень недостаточности клапанов аорты определяется при ангиографии (1 ст. - узкая струйка, в 4-ой - в диастолу коитрастируется вся полость левого желудочка).
Стеноз аортального отверстия (сужение более 0,5-1 см2, в норме 3 см2).
Нарушение гемодинамики сводится к затрудненному оттоку крови из левого желудочка в аорту, что ведет к удлинению систолы и повышению давления в полости левого желудочка. Последний резко гипертрофируется. При декомпенсации возникает застой в левом предсердии, а затем и в легких, далее - в большом круге кровообращения.
В клинике обращают внимание на себя боли в сердце, головокружения, обмороки. Наблюдается систолическое дрожание, пульс parvus et tardus. Порок долгое время остается компенсированным.
Ренгеносемиотика. Гипертрофия левого желудочка, закругление и удлинение его дуги, аортальная конфигурация, постстенотическое расширение аорты (её восходящей части). Сердечные сокращения напряженные и отражают затрудненный выброс крови. Довольно часты обызвествления клапанов аорты. При декомпенсации развивается митрализация сердца (сглаживается талия за счет увеличения левого предсердия). При ангиографии определяется сужение аортального отверстия.
Перикардиты
Этиология: ревматизм, туберкулез, бактериальные инфекции.
Формы:
1. фиброзный перикардит
2. выпотной (экссудативный) перикардит Клиника. Боли в сердце, бледность, цианоз, одышка, набухание вен шеи.
Диагноз сухого перикардита обычно ставится на основании клинических данных (шум трения перикарда). При скоплении жидкости в полости перикард а (минимальное количество, которое можно выявить рентгенологически составляет 30-50 мл), отмечается равномерное увеличение размеров сердца, последняя принимает трапециевидную форму. Дуги сердца сглажены и не дифференцируются. Сердце широко прилежит к диафрагме, поперечник его преобладает над длинником. Сердечно-диафрагмальные углы острые, сосудистый пучок укорочен, застой в легких отсутствует. Смещение пищевода не наблюдается, пульсация сердца резко ослаблена или отсутствует, но сохранена на аорте.
Слипчивый или сдавливающий перикардит - результат сращения между обоими листками перикарда, а также между перикардом и медиастинальной плеврой, что затрудняет сокращения сердца. При обызвествлении - «панцирное сердце».
Миокардиты
Различают:
1. инфекгшонно-аллергический
2. токсико-аллергический
3. идиопатический миокардиты
Клиника. Боли в сердце, учащение пульса со слабым его наполнением, расстройство ритма, появление признаков сердечной недостаточности. На верхушке сердца - систолический шум, тоны сердца глухие. Обращает внимание застой в легких.
Рентгенологическая картина обусловлена миогенной дилятацией сердца и признаками снижения сократительной функции миокарда, а также снижением амплитуды сердечных сокращений и их учащением, что в конечном счете приводит к застою в малом круге кровообращения. Основной рентгеновский признак увеличение желудочков сердца (преимущественно левого), трапециевидная форма сердца, предсердия увеличены в меньшей степени, чем желудочки. Левое предсердие может выходить на правый контур, возможно отклонение контрастированного пищевода, сокращения сердца небольшой глубины, учащены. При возникновении левожелудочковой недостаточности в легких появляется застой за счет затруднения оттока крови из легких. При развитии правожелудочковой недостаточности расширяется верхняя полая вена, появляются отеки.
РЕНТГЕНОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ЖЕЛУДОЧНО-КИШЕЧНОГО ТРАКТА
Болезни органов пищеварения занимают одно из первых мест в общей структуре заболеваемости, обращаемости и госпитализации. Так, около 30% населения имеют жалобы со стороны желудочно-кишечного тракта, 25,5% больных поступают в стационары по неотложной помощи, в общей смертности патология органов пищеварения составляет 15%.
Прогнозируется дальнейший рост заболеваний, преимущественно тех, в развитии которых играют роль стрессовые, дискенетические, имуннологические и метаболические механизмы (язвенная болезнь, колиты и др.). Утяжеляется течение заболеваний. Часто заболевания органов пищеварения сочетаются друг с другом и болезнями других органов и систем, возможно поражение органов пищеварения при системных заболеваниях (склеродермия, ревматизм, заболевания системы кроветворения и др.).
Строение и функция всех отделов пищеварительного канала могут быть исследованы с помощью лучевых методов. Для каждого органа разработаны оптимальные приемы лучевой диагностики. Установление показаний к лучевому исследованию и его планирование проводят на основании анамнестических и клинических данных. Учитываются и данные эндоскопического исследования, позволяющее осмотреть слизистую и получить материал для гистологического исследования.
Рентгенологическое исследование пищеварительного канала занимает особое место в рентгенодиагностике:
1) распознавание болезней пищевода, желудка и толстой кишки основывается на сочетании просвечивания и съемки. Здесь наиболее ярко проявляется значение опыта врача рентгенолога,
2) исследование желудочно-кишечного тракта требует предварительной подготовки (исследование натощак, использование очистительных клизм, слабительных средств).
3) необходимость искусственного контрастирования (водная взвесь сульфата бария, введение в полость желудка воздуха, в брюшную полость - кислорода и др.),
4) исследование пищевода, желудка и толстой кишки производится в основном «изнутри» со стороны слизистой оболочки.
Рентгенологическое исследование благодаря простоте, общедоступности и высокой результативности позволяет:
1) распознать большинство заболеваний пищевода, желудка и толстой кишки,
2) контролировать результаты лечения,
3) осуществлять динамические наблюдения при гастритах, язвенной болезни и др. заболеваниях,
4) производить скрининг больных (флюорография).
Методики приготовления бариевой взвеси. Успех рентгеновского исследования зависит, прежде всего, от способа приготовления бариевой взвеси. Требования, предъявляемые к водной взвеси сернокислого бария: максимальная мелкодислерстность, массообъемность, адгезивность и улучшение органолептических свойств. Существует несколько способов приготовления бариевой взвеси:
1. Кипячение из расчета 1:1 (на 100,0 BaS04 100 мл воды) в течение 2-3 часов.
2. Использование смесителей типа «Воронеж», электромиксеров, ультразвуковых установок, микроразмельчителей.
3. В последнее время с целью улучшения обычного и двойного контрастирования стремятся увеличить массообъемность сульфата бария и его вязкость за счет различного рода добавок, таких как дистилированный глицерин, полиглюкин, цитрат натрия, крахмал и др.
4. Готовые формы сульфата бария: сульфобар и др. патентованные препараты.
Ренттеноанатомия
Пищевод - полая трубка длиной 20-25см, шириной 2-Зсм. Контуры ровные, четкие. 3 физиологических сужения. Отделы пищевода: шейный, грудной, абдоминальный. Складки - про дольные в количестве 3-4. Проекции исследования (прямая, правое и левое косые позиции). Скорость продвижения бариевой взвеси по пищеводу 3-4 сек. Способы замедления - исследование в горизонтальном положении и прием густой пастообразной массы. Фазы исследования: тугое заполнение, изучение пневморельефа и рельефа слизистой.
Желудок. При анализе рентгенологической картины необходимо иметь представление о номенклатуре различных его отделов (кардиальный, субкардиальный отдел, тело желудка, синус, антральный отдел, пилорический отдел, свод желудка).
Форма и положение желудка зависят от конституции, пола, возраста, тонуса, положения исследуемого. Различают желудок в форме крючка (вертикально расположенный желудок) у астеников и рога (горизонтально расположенный желудок) у лиц гиперстенического сложения.
Желудок располагается большей частью в левом подреберье, но может смещаться в очень широких предела. Наиболее непостоянное положение нижней границы (в норме - на 2-4см выше гребня подвздошных костей, однако у худых намного ниже, часто над входом в малый таз). Наиболее фиксированные отделы - кардиальный и привратник. Большее значение имеет ширина ретрогастрального пространства. В норме оно не должно превышать ширину тела поясничного позвонка. При объемных процессах это расстояние увеличивается.
Рельеф слизистой оболочки желудка образован складками, межскладочными пространствами и желудочными полями. Складки представляются полосками просветления шириной 0,50,8см. Однако их размеры отличаются большой вариабельностью и зависят от пола, конституции, тонуса желудка, степени растяжения, настроения. Желудочные поля определяются в виде мелких дефектов наполнения на поверхности складок за счет возвышений, на вершине которых открываются протоки желудочных желез; размеры их в норме не превышают Змм и выглядят в виде тонкой сетки (так называемый тонкий рельеф желудка). При гастритах он становится грубым, достигая размеров 5-8мм, напоминая «булыжную мостовую».
Секреция желудочных желез натощак минимальная. В норме желудок должен быть пуст.
Тонус желудка - способность его охватывать и удерживать глоток бариевой взвеси. Различают нормотоничный, гипертоничный, гипотоничный и атоничный желудок. При нормальном тонусе бариевая взвесь опускается медленно, при пониженном быстро.
Перистальтика - ритмическое сокращение стенок желудка. Обращается внимание на ритм, длительность отдельных волн, глубину и симметричность. Различают глубокую, сегментирующую, среднюю, поверхностную перистальтику и отсутствие ее. Для возбуждения перистальтики иногда приходится прибегать к морфинной пробе (п/к 0,5 мл морфина).
Эвакуация. В течение первых 30 минут из желудка эвакуируется половина принятой водной взвеси сульфата бария. Полностью желудок освобождается от бариевой взвеси в течение 1,5 часов. В горизонтальном положении на спине опорожнение резко замедляется, на правом боку ускоряется.
Пальпация желудка в норм е безболезненная.
Двенадцатиперстная кишка имеет форму подковы, длина ее от 10 до 30 см, ширина - от 1,5 до 4 см. В ней различают луковицу, верхнегоризонтальную, нисходящую и нижнегоризонтальную части. Рисунок слизистой перистый, непостоянный за счет Керкринговых складок. Кроме того., различают малую и
большую кривизну, медиальный и латеральный карманы, а также переднюю и заднюю стенки двенадцатиперстной кишки.
Методики исследования:
1) обычное классическое исследование (во время исследования желудка)
2) исследование в условиях гипотонии (зондовой и беззондовой) с использованием атропина и его производных.
Аналогично исследуется и тонкая кишка (подвздошная и тощая).
Рентгеносемиотика заболеваний пищевода, желудка, толстой кишки (основные синдромы)
Рентгеновская симптоматика заболеваний органов пищеварительного тракта чрезвычайно разнообразна. Основные ее синдромы:
1) изменение положения органа (дислокация). Например, смещение пищевода увеличенными лимфоузлами, опухолью, кистой, левым предсердием, смещение при ателектазе, плеврите и др. Желудок и кишечник смещается при увеличении печени, грыжах пищеводного отверстия диафрагмы и пр;
2) деформации. Желудок в форме кисета, улитки, реторты, песочных часов; двенадцатиперстная кишка - луковица в виде трилистника;
3) изменение размеров: увеличение (ахалазия пищевода, стеноз пилоро-дуоденальной зоны, болезнь Гиршпрунга и др.), уменьшение (инфильтрирующая форма рака желудка),
4) сужения и расширения: диффузные (ахалазия пищевода, стеноз желудка, кишечная непроходимость и др., локальные (опухолевые, рубцовые и др.);
5) дефект наполнения. Обычно определяется при тугом заполнении за счет объемного образования (экзофитно растущая опухоль, инородные тела, безоары, каловый камень, остатки пищи и
др.);
6) симптом «ниши» - является результатом изъязвления стенки при язве, опухоли (при раке). Различают «нишу» на контуре в виде дивертикулоподобиого образования и на рельефе в виде «застойного пятна»;
7) изменение складок слизистой (утолщение, обрыв, ригидность, конвергенция и др.);
8) ригидность стенки при пальпации и раздувании (последняя не меняется);
9) изменение перистальтики (глубокая, сегментирующая, поверхностная, отсутствие перистальтики);
10) болезненность при пальпации).
Заболевания пищевода
Инородные тела. Методика исследования (просвечивание, обзорные снимки). Больной принимает 2-3 глотка густой бариевой взвеси, затем 2-3 глотка воды. При наличии инородного тела на верхней поверхности его остаются следы бария. Делаются снимки.
Ахалазия (неспособность к расслаблению) - расстройство иннервации пищеводно-желудочного перехода. Рентгеновская семиотика: четкие, ровные контуры сужения, симптом «писчего пера», выраженное супрастенотическое расширение, эластичность стенок, периодическое «проваливание» взвеси бария в желудок, отсутствие газового пузыря желудка и длительность доброкачественного течения заболевания.
Рак пищевода. При экзофитно растущей форме заболевания рентгеновская семиотика характеризуется 3 классическими признаками: дефект наполнения, злокачественный рельеф, ригидность стенки. При инфильтративной форме имеет место ригидность стенки, неровность контуров, изменение рельефа слизистой. Следует дифференцировать с рубцовыми изменениями после ожогов, варикозным расширением вен, кардиоспазмом. При всех этих заболеваниях сохраняется перистальтика (эластичность) стенок пищевода.
Заболевания желудка
Рак желудка. У мужчин занимает первое место в структуре злокачественных опухолей. В Японии носит характер национальной катастрофы, в США отмечается тенденция к снижению заболевания. Преимущественный возраст 40-60 лет.
Классификация. Наибольшее распространение получило деление рака желудка на:
1) экзофитные формы (полиповидный, грибовидный, в виде цветной капусты, чашеобразный, бляшковидная форма с изъязвлением и без изъязвления),
2) эндофитные формы (язвенно-инфильтратизные). На долю последних приходится до 60% всех раков желудка,
3) смешанные формы.
Рак желудка метастазирует в печень (28%), забрюшинные лимфоузлы (20%), брюшину (14%), легкие (7%), кости (2%). Чаще всего локализуется в антральном отделе (свыше 60%) и в верхних отделах желудка (около 30%).
Клиника. Часто рак годами маскируется под гастрит, язвенную болезнь, желчнокаменную болезнь. Отсюда, при любом желудочном дискомфорте показано рентгенологическое и эндоскопическое исследование.
Рентгеновская семиотика. Различают:
1) общие признаки (дефект наполнения, злокачественный или атипичный рельеф слизистой, отсутствие перистгльтики), 2) частные признаки (при экзофитных формах - симптом обрыва складок, обтекания., разбрызгивания и др.; при эндсфитных формах - выпрямление малой кривизны, неровность контура, деформация желудка; при тотальном поражении - симптом микрогастриума.). Кроме того, при инфильтративных формах обычно плохо выражен или отсутствует дефект наполнения, почти не изменяется рельеф слизистой, часто наблюдается симптом плоских вогнутых дуг (в виде волн по малой кривизне), симптом ступеньки Гаудека.
Рентгеносемиотика рака желудка зависит и от локализации. При локализации опухоли в выходном отделе желудка отмечается:
1) удлинение пилорическсго отдела в 2-3 раза, 2) имеет место коническое сужение пилорического отдела, 3) наблюдается симптом подрытости основания пилорического отдела 4) расширение желудка.
При раке верхнего отдела (это раки с длительным «немым» периодом) имеют место: 1) наличие дополнительной тени на фоне газового пузыря,
2) удлинение абдоминального отдела пищевода,
3) разрушение рельефа слизистой,
4) наличие краевых дефектов,
5) симптом обтекания - «дельты»,
6) симптом разбрызгивания,
7) притупление угла Гисса (в норме он острый).
Раки большой кривизны склонны к изъязвлению - глубокие в виде колодца. Однако и любая доброкачественная опухоль в этой области склонна к изъязвлению. Поэтому с заключением надо быть осторожным.
Современная лучевая диагностика рака желудка. В последнее время возросло количество рака в верхних отделах желудка. Среди всех методов лучевой диагностики базовым остается рентгенологическое исследование с тугим наполнением. Считается, что на долю диффузных форм рака сегодня приходится от 52 до 88%. При этой форме рак длительное время (от нескольких месяцев до одного года и более) распространяется преимущественно внутристеночно с минимальными изменениями на поверхности слизистой. Отсюда, эндоскопия часто неэффективна.
Ведущими рентгенологическими признаками внутристеночно растущего рака следует считать неровность контура стенки при тугом заполнении (часто одной порции бариевой взвеси недостаточно) и утолщение ее в месте опухолевой инфильтрации при двойном контрастировании на протяжении 1,5 - 2,5 см.
Из-за малой протяженности поражения часто перистальтика перекрывается соседними участками. Иногда диффузный рак проявляется резкой гиперплазией складок слизистой. Часто складки конвергируют или огибают участок поражения, в результате чего создается эффект отсутствия складок - (лысого пространства) с наличием в центре небольшого пятна бария, обусловленного не изъязвлением, а вдавлением стенки желудка. В этих случаях полезны такие методы как УЗИ, КТ, МРТ.
Гастриты. В последнее время в диагностике гастритов произошло смещение акцента в сторону гастроскопии с биопсией слизистой желудка. Однако рентгенологическое исследование занимает важное место в диагностике гастритов из-за доступности, простоты.
Современное распознавание гастрита базируется на изменениях тонкого рельефа слизистой, но для его выявления необходимо двойное эндогастральное контрастирование.
Методика исследования. За 15 минут до исследования подкожно вводится 1мл 0,1% раствора атропина или дается 2-3 таблетки аэрона (под язык). Затем производится раздувание желудка газообразующей смесью с последующим приемом 50мл водной взвеси сульфата бария в виде насты со специальными добавками. Больной укладывается в горизонтальное положение и делается 23 ротационных движений с последующим производством снимков на спине и в косых проекциях. Затем проводится обычное исследование.
С учетом рентгенологических данных выделяется несколько типов изменения тонкого рельефа слизистой желудка:
1) мелкосетчатый или гранулярный (ареолы 1-3 мм),
2) модулярный -(размер ареол 3-5 мм),
3) грубонодулярный - (размер ареол более 5 мм, рельеф в виде «булыжной мостовой»). Кроме того, в диагностике гастритов учитываются и такие признаки, как наличие жидкости натощак, грубый рельеф слизистой, разлитая болезненность при пальпации, спазм привратника, рефлюксы и др.
Доброкачественные опухоли. Среди них наибольшее практическое значение имеют полипы и лейомиомы. Одиночный полип при тугом заполнении обычно определяется в виде округлого дефекта наполнения с четкими, ровными контурами размером 1-2 см. Складки слизистой обходят дефект наполнения или полип располагается на складке. Складки мягкие, эластичные, пальпация безболезненна, перистальтика сохранена. Лейомиомы отличаются от рентгеновской семиотики полипов сохраненностью складок слизистой и значительными размерами.
Безоары. Следует различать камни желудка (безоары) и инородные тела (проглоченны е кости, косточки фруктов и пр.). Термин безоар связан с названием горного козла, в желудке которого находили камни от облизанной шерсти.
Несколько тысячелетий камень считался антидотом и ценился выше золота, так как он якобы приносит счастье, здоровье, молодость.
Природа безоаров желудка различна. Чаще всего встречаются:
1) фитобезоары (75%). Образуются при поедании большого количества фруктов, содержащих много клетчатки (незрелая хурма и др.),
2) себобезоары - возникают при поедании большого количества жира с высокой точкой плавления (бараний жир),
3) трихобезоары - встречаются у людей, имеющих вредную привычку откусывать и глотать волосы, а также у людей ухаживающих за животными,
4) пиксобезоары - результат жевания смол, вара, жвачки,
5) шеллакобезоары - при употреблении заменителей спирта (спиртовой лак, палитура, нитролак, нитроклей идр.),
6) безоары могут возникать после ваготомий,
7)описаны безоары, состоящие из песка, асфальта, крахмала и резины.
Безоары обычно клинически протекают под маской опухоли: боли, рвота, похудание, пальпируемая опухоль.
Рентгенологически безоары определяются в виде дефекта наполнения с неровными контурами. В отличие от рака, дефект наполнения смещается при пальпации, сохраняется перистальтика и рельеф слизистой. Иногда безоар симулирует лимфосаркому, лимфому желудка.
Язвенная болезнь желудка и 12-ти перегной кишки чрезвычайно распространена. Страдает 7-10% населения планеты. Ежегодные обострения наблюдаются у 80% больных. В свете современных представлений это общее хроническое, циклически протекающее, рецидивирующее заболевание, в основе которого лежат сложные этиологические и патологические механизмы язво-образования. Это результат взаимодействия факторов агрессии и защиты (слишком сильные факторы агрессии при слабых факторах защиты). Фактором агрессии является пептический протеолиз при длительной гиперхлоргидрии. К факторам защиты относится слизистый барьер, т.е. высокая регенераторная способность слизистой, устойчивая нервная трофика, хорошая васкуляризация.
В течении язвенной болезни различают три стадии: 1) функциональные расстройства в виде гастродуоденита, 2) стадия сформировавшегося язвенного дефекта и 3) стадия осложнений (пенетрация, перфорация, крэвотечение, деформация, перерождение в рак).
Рентгенологические проявления гастродуоденита: гиперсекреция, нарушение моторики, перестройка слизистой в виде грубых расширенных подушкообразных складок, грубый микрорельеф, спазм или зияние превратиика, дуоденогастралъный рефлюкс.
Признаки язвенной болезни сводятся к наличию прямого признака (ниша на контуре или на рельефе) и косвенных признаков. Последние в свою очередь подразделяются на функциональные и морфологические. К функциональным относятся гиперсекреция, спазм привратника, замедление эвакуации, локальный спазм в виде «указующего перста» на противоположной стенке, местная гиперматильность, изменение перистальтики (глубокая, сегментирующая), тонуса (гипертонус), дуоденогастралъный рефлюкс, желудочнопищеводный рефлюкс и др. Морфологическими признаками являются дефект наполнения за счет воспалительного вала вокруг ниши, конвергенция складок (при рубцевании язвы), рубцовая деформация (желудок в форме кисета, песочных часов, улитки, каскада, луковица 12-ти перстной кишки в виде трилистника и др.).
Чаще язва локализуется в области малой кривизны желудка (36-68%) и протекает относительно благоприятно. В антральном отделе язвы располагаются также относительно часто 9-15%) и встречаются, как правило, у лиц молодого возраста, сопровождаясь признаками язвенной болезни 12-ти перстной кишки (поздние голодные боли, изжога, рвота и пр.). Рентгенодиагностика их затруднена из-за выраженной двигательной активности, быстрого прохождения бариевой взвеси, сложности выведения язвы на контур. Часто осложняются пенетрацией, кровотечением, перфорацией. В кардиальном и субкардиальном отделе язвы локализуются в 2-18% случаев. Обычно встречаются у пожилых людей и представляют определенные трудности для эндоскопической и рентгенологической диагностики.
По своей форме и размерам ниши при язвенной болезни вариабильны. Нередко (13-15%) наблюдается множественность поражения. Частота выявления ниши зависит от многих причин (локализации, размеров, наличия жидкости в желудке, заполнения язвы слизью, сгустком крови, остатками пищи) и составляет от 75 до 93%. Довольно часто встречаются гигантские ниши (свыше 4 см в диаметре), пенетрирующие язвы (2-х - 3-х сложность ниши).
Язвенную (доброкачественную) нишу следует дифференцировать от раковой. Раковые ниши имеют ряд особенностей:
1) преобладание продольного размера над поперечным,
2) изъязвление располагается ближе к дистальному краю опухоли,
3) ниша имеет неправильную форму с бугристыми очертаниями, обычно не выводится за пределы контура, ниша безболезненна при пальпации, плюс признаки, свойственные раковой опухоли.
Язвенные ниши обычно
1) располагаются вблизи малой кривизны желудка,
2) выходят за контуры желудка,
3) имеют форму конуса,
4) поперечник больше длинника,
5) болезненны при пальпации, плюс признаки язвенной болезни.
ЛУЧЕВОЕ ИССЛЕДОВАНИЕ ОПОРНО-ДВИГАТЕЛЬНОЙ СИСТЕМЫ
В 1918 году в Государственном рентгенорадиологическом институте в г. Петрограде была открыта первая в мире лаборатория для исследования анатомии человека и животных с помощью рентгеновского исследования.
Рентгенологический метод позволил получить новые данные об анатомии и физиологии опорно-двигательного аппарата: исследовать строение и функцию костей и суставов прижизненно, в целостном организме, при воздействии на человека разнообразных факторов внешней среды.
Большой вклад в развитие остеопатологии внесла группа отечественных ученых: С.А. Рейнберг, Д.Г. Рохлин, ПА. Дьяченко и др.
Рентгенологический метод в изучении опорно-двигательной системы является ведущим. Основные его методики: рентгенография (в 2-х проекциях), томография, фистулография, снимки с увеличением рентгеновского изображения, контрастные методики.
Важным методом в исследовании костей и суставов является рентгеновская компьютерная томография. Ценным методом следует признать и мапгитно-резонансную томографию, особенно при исследовании костного мозга. Для исследования обменных процессов в костях и суставов широко используются методы радионуклидной диагностики (метастазы в кости выявляются раньше рентгенологического исследования на 3-12 месяцев). Новые пути диагностики заболеваний опорно-двигательной системы открывает сонография, особенно в диагностике инородных тел, слабопоглощающих рентгеновские лучи, суставных хрящей, мышц, связок, сухожилий, скопление крови и гноя в околокостных тканях, околосуставных кист и др.
Лучевые методы исследования позволяют:
1. проследить за развитием и формированием скелета,
2. оценить морфологию кости (форму, очертания, внутреннюю структуру и пр.),
3. распознать травматические повреждения и диагностировать различные заболевания,
4. судить о функциональной и патологической перестройке (вибрационная болезнь, маршевая стопа и др.),
5. изучить физиологические процессы в костях и суставах,
6. оценить реакцию на различные факторы (токсические, механические и пр.).
Лучевая анатомия.
Максимальная прочность конструкции при минимальной трате строительного материала характеризуют анатомические особенности строения костей и суставов (бедренная кость выдерживает нагрузку по продольной оси в 1,5 тонны). Кость является благоприятным объектом рентгенологического исследования, т.к. содержит много неорганических веществ. Кость состоит из костных балок и трабекул. В корковом слое они плотно прилежат, образуя однородную тень, в эпифизах и метафизах - находятся на некотором расстоянии, образуя губчатое вещество, между ними находится костномозговая ткань. Соотношение костных балок и костномозговых пространств создают костную структуру. Отсюда, в кости различают: 1) плотный компактный слой, 2) губчатое вещество (ячеистой структуры), 3) костномозговой канал в центре кости в виде щюсветления. Различают трубчатые, короткие, плоские и смешанные кости. В каждой трубчатой кости различают эпифиз, метафиз и диафиз, а также апофизы. Эпифиз суставной отдел кости, покрытый хрящом. У детей он отделяется от метафиза ростковым хрящом, у взрослых метафизарным швом. Апофизы - дополнительные точки окостенения. Это места прикрепления мышц, связок и сухожилий. Деление кости на эпифиз, метафиз и диафиз имеет большое клиническое значение, т.к. некоторые заболевания имеют излюбленную локализацию (остеомиелит в области метадиафиза, туберкулез поражает эпифиз, саркома Юинга локализуется в области диафиза и др.). Между соединяющимися концами костей имеется светлая полоса так называемая рентгеновская суставная щель, обусловленная хрящевой тканью. На хороших снимках видна капсула сустава, суставная сумка, сухожилие.
Развитие человеческого скелета.
В своем развитии костный скелет проходит перепончатый, хрящевой и костный этапы. В течение первых 4-5 недель скелет плода перепончатый и на снимках не виден. Нарушения развития в этот период ведут к изменениям, составляющим группу фиброзных дисплазий. В начале 2-го месяца утробной жизни плода перепончатый скелет замещается хрящевым, также на рентгенограммах не получающим своего отображения. Нарушения развития ведут к хрящевым дисплазиям. Начиная со 2-го месяца и до 25 лет хрящевой скелет замещается костным. К концу внутриутробного периода большая часть скелета является костным и на снимках живота беременной кости плода хорошо видны.
Скелет новорожденных имеет следующие особенности:
1. кости малы,
2. они бесструктурны,
3. в концах большинства костей еще нет ядер окостенения (эпифизы не видны),
4. рентгеновские суставные щели велики,
5. большой мозговой череп и малый лицевой,
6. относительно велики орбиты,
7. слабо выраженные физиологические изгибы позвоночника.
Рост костного скелета происходит за счет ростковых зон в длину, в толщину - за счет периоста и эндоста. В возрасте 1-2 лет начинается дифференцировка скелета: появляются точки окостенения, кости синостозируются, увеличиваются в размерах, появляются изгибы позвоночника. ?ост костного скелета заканчивается к 20-25 годам. Между 20-25 годами и до 40-летнего возраста костно-суставной аппарат относительно стабилен. С 40 лет начинаются инволютивные изменения (дистрофические изменения суставного хряща), разрежение костной структуры, появление остеопороза и обызвествления в местах прикрепления связок и т.д. На рост и развитие костно-суставной системы оказывают влияние все органы и системы, особенно паращитовидные железы, гипофиз и ЦНС.
План изучения рентгенограмм костно-суставной системы. Необходимо оценить:
1) форму, положение, величину костей и суставов,
2) состояние контуров,
3) состояние костной структуры,
4) выявить состояние ростковых зон и ядер окостенения (у детей),
5) изучить состояние суставных концов костей (рентгеновской суставной щели),
6) оценить состояние мягких тканей.
Рентгеновская семиотика заболеваний костей и суставов.
Рентгеновская картина изменений кости при любом патологическом процессе складывается из 3-х компонентов: 1) изменения формы и величины, 2) изменения контуров, 3) изменения структуры. В большинстве случаев патологический процесс ведет к деформации кости, складывающейся из удлинения, укорочения и искривления, к изменению объема в виде утолщения за счет периостита (гиперостоз), истончения (атрофия) и вздутия (киста, опухоль и пр.).
Изменение контуров кости: контуры кости в норме характеризуются ровностью (гладкостью) и четкостью. Лишь в местах прикрепления мышц и сухожилий, в области бугров и бугристостей контуры шероховаты. Не четкость контуров, неровность их нередко является результатом воспалительных или опухолевых процессов. Например, разрушение кости в результате прорастания рака слизистой полости рта.
Все физиологические и патологические процессы, происходящие в костях, сопровождаются изменением костной структуры, уменьшением или увеличением костных балок. Своеобразное сочетание этих явлений создают в рентгеновском изображении такие картины, которые присущи определенным заболеваниям, позволяя диагностировать их, определять фазу развития, осложнения.
Структурные изменения кости могут носить характер физиологической (функциональной) и патологической перестройки, вызванной различными причинами (травматическими, воспалительными, опухолевыми, дегенеративно-дистрофическими и др.).
Насчитывается свыше 100 заболеваний, сопровождающихся изменением содержания минералов в костях. Наиболее часто является остеопороз. Это - уменьшение количества костных балок в единице объема кости. При этом общий объем и форма кости обычно остаются без изменений (если нет атрофии).
Различают: 1) идиопатический остеопороз, развивающийся без видимых причин и 2) при различных заболеваниях внутренних органов, эндокринных желез, в результате приема лекарств и др. Кроме того, остеопороз могут вызвать нарушения питания, состояние невесомости, алкоголизм, неблагоприятные условия труда, длительная иммобилизация, воздействие ионизирующих излучений и др.
Отсюда, в зависимости от причин различают остеопороз физиологический (инволютивный), функциональный (от бездеятельности) и патологический (при различных заболеваниях). По распространенности остеопороз подразделяют на: 1) местный, например, в области перелома челюсти спустя 5-7 дней, 2) регионарный, в частности, захватывающий область ветви нижней челюсти при остеомиелите 3) распространенный, когда поражается область тела и ветви челюсти и 4) системный, сопровождающийся поражением всего костного скелета.
В зависимости от рентгенологической картины различают: 1) очаговый (пятнистый) и 2) диффузный (равномерный) остеопороз. Пятнистый остеопороз определяется в виде очагов разрежения костной ткани размером от 1 до 5мм (напоминает материю Изъеденную молью). Встречается при остеомиелите челюстей в острой фазе его развития. В челюстных костях чаще наблюдается диффузный (стеклянный) остеопороз. При этом кость становится прозрачной, структура широкопетлистой, корковый слой истончается в виде очень узкой плотной линии. Наблюдается в старческом возрасте, при гиперпаратиреоидной остеодистрофии и других системных заболеваниях.
Остеопороз может развиться в течение нескольких дней и даже часов (при каузалгиях), при иммобилизации - за 10-12 дней, при туберкулезе требуется несколько месяцев и даже лет. Остеопороз - процесс обратимый. С устранением причины костная структура восстанавливается.
Выделяют и гипертрофический остеопороз. При этом на фоне общей прозрачности отдельные костные балки представляются гипертрофированными.
Остеосклероз - симптом довольно часто встречающихся при заболеваниях костей. Сопровождается увеличением количества костных балок в единице объема кости и уменьшением межблочных костномозговых пространств. При этом кость становится более плотной, бесструктурной. Корковый слой расширяется, костномозговой канал суживается.
Различают: 1) физиологический (функциональный) остеосклероз, 2) идиопатический в результате аномалии развития (при мраморной болезни, миелореостозе, остеопойкилии) и 3) патологический (посттравматический, воспалительный, токсический и др.).
В отличие от остеопороза, для возникновения остеосклероза требуется довольно длительное время (месяцы, годы). Процесс необратимый.
Деструкция - разрушение кости с замещением ее патологической тканью (грануляционной, опухолевой, гноем, кровью и др.).
Различают: 1) воспалительную деструкцию (остеомиелит, туберкулез, актиномикоз, сифилис), 2) опухолевую (остеогенная саркома, ретикулосаркома, метастазы и др.), 3) дегенеративно-дистрофическую (гиперпаратиреоидная остеодистрофия, остеоартроз, кисты при деформирующем остеоартрозе и др.).
Рентгенологически, независимо от причин, деструкция проявляется просветлением. Она может выглядеть мелко или крупноочаговой, многоочаговой и обширной, поверхностной и центральной. Поэтому для установления причин необходим тщательный анализ очага деструкции. Необходимо определить локализацию, размеры, количество очагов, характер контуров, рисунок и реакцию окружающих тканей.
Остеолиз - полное рассасывание кости без замещения ее какой-либо патологической тканью. Это результат глубоких нейротрофических процессов при заболеваниях центральной нервной системы, повреждениях периферических нервов (спинная сухотка, сирингомиелия, склеродермия, проказа, чешуйчатый лишай и др.). Рассасыванию подвергаются периферические (концевые) отделы кости (ногтевые фаланги, суставные концы крупных и мелких суставов). Этот процесс наблюдается при склеродермии, сахарном диабете, травматических повреждениях, ревматоидном артрите.
Частым спутником заболеваний костей и суставов являются остеонекроз и секвестрация. Остеонекроз - омертвление участка кости вследствие нарушения питания. При этом в кости уменьшается количество жидких элементов (кость «высыхает») и рентгенологически такой участок определяется в виде затемнения (уплотнения). Различают: 1) асептические остеонекоозы (при остеохондропатии, тромбозах и эмболиях кровеносных сосудов), 2) септические (инфекционные), встречающиеся при остеомиелите, туберкулезе, актиномикозе и др. заболеваниях.
Процесс отграничения участка остеонекроза называется секвестрацией, а отторгнутый участок кости - секвестром. Различают корковые и губчатые секвестры, краевые, центральные и тотальные. Секвестрация характерна для остеомиелита, туберкулеза, актиномикоза и других заболеваний.
Изменение контуров кости часто связано с периостальными наслоениями (периоститами и периостозами).
4) функционально-адаптационные периоститы. Две последние формы следует именовать пер гостозами.
При выявлении периостальных изменений следует обратить внимание на их локализацию, протяженность и характер наслоений, Чаще всего периоститы выявляются в области нижней челюсти.
По форме различают линейные, слоистые, бахромчатые, спикулообразные периоститы (периостозы) и периостит в виде козырька.
Линейные периоститы в виде тонкой полоски параллельной корковому слою кости обычно встречаются при воспалительных заболеваниях, травмах, саркоме Юинга и характеризуют начальные стадии заболевания.
Слоистые (луковичные) периоститы рентгенологически определяются в виде нескольких линейных теней и обычно свидетельствуют о толчкообразном течении процесса (саркома Юинга, хронический остеомиелит и др.).
При разрушении линейных наслоений возникает бахромчатый (разорванный) периостит. По своему рисунку он напоминает пемзу и считается характерным для сифилиса. При третичном сифилисе может наблюдаться: и кружевной (гребневидный) периостит.
Патогномоничным для злокачественных опухолей считается спикулообразный (игольчатый) периостит. Встречается при остеогенной саркоме в результате выхода опухоли в мягкие ткани.
Изменения рентгеновской суставной щели. являющейся отображением суставного хряща и могут быть в виде сужения -при разрушении хрящевой ткани (туберкулез, гнойный артрит, остеоартроз), расширения за счет увеличения хряща (остеохондропатия), а также подвывиха. При скоплении в полости сустава жидкости, расширения рентгеновской суставной щели не бывает.
Изменения мягких тканей весьма разнообразны и также должны быть объектом пристального рентгенологического исследования (опухолевые, воспалительные, травматические изменения).
Повреждения костей и суставов.
Задачи рентгенологического исследования:
1. подтвердить диагноз или отвергнуть его,
2. определить характер и вид перелома,
3. определить количество и степень смещения огломков,
4. обнаружить вывих или подвывих,
5. выявить инородные тела,
6. установить правильность лечебных манипуляций,
7. осуществлять контроль в процессе заживления. Признаки перелома:
1. линия перелома (в виде просветления и уплотнения) -поперечные, продольные, косые, внутрисуставные и пр. переломы.
2. смещение отломков: по ширине или боковое, по длине или продольное (с захождением, расхождением, вклинением отломков), по оси или угловое, по периферии (спиралевидное). Смещение определяют по периферическому отломку.
Особенности переломов у детей - обычно поднадкостничные, в виде трещины и эпифизолиза. У лиц пожилого возраста -переломы обычно носят многооскольчатый характер, с внутрисуставной локализацией, со смещением отломков, заживление медленное, часто осложняющееся развитием ложного сустава.
Признаки переломов тел позвонков: 1)клиновидная деформация с острием направленным кпереди, уплотнение структуры тела позвонка, 2) наличие тени гематомы вокруг пораженного позвонка, 3) смещение позвонка кзади.
Различают травматические и патологические переломы (в результате деструкции). Дифференциальная диагностика часто трудна.
Контроль за заживлением перелома. В течении первых 7-10 дней костная мозоль носит соединительнотканный характер и на снимках не видна. В этот период отмечается расширение линии перелома и закругленность, сглаженность концов сломанных костей. С 20-21 дня, чаще спустя 30-35 дней в костной мозоли появляются островки обызвествлений отчетливо определяемых на рентгенограммах. Полное обызвествление занимает от 8 до 24 недель. Отсюда, рентгенологически можно выявить: 1) замедление формирования костной мозоли, 2) чрезмерное её развитие, 3) В норме надкостница на снимках не определяется. Для ее выявления необходимы уплотнение (обызвествление) и отслоение. Периостит - ответная реакция надкостницы на то или иное раздражение. У детей рентгенологические признаки периостита определяются на 7-8, у взрослых - на 12-14 день.
В зависимости от причины различают: 1) асептические (при травме), 2) инфекционные (остеомиелит, туберкулез, сифилис), 3) ирритативно-токсические (опухоли, нагноительные процессы) и формирующийся или сформированный ложный сустав. При этом отсутствует костная мозоль, имеет место закругление и отшлифовка концов отломков и заращение костномозгового канала.
Перестройка костной ткани под влиянием чрезмерной механической силы. Кость чрезвычайно пластичный орган, перестраивающийся всю жизнь, приспосабливаясь к условиями жизнедеятельности. Это физиологическая перестройка. При предъявлении кости несоразмерно повышенных требований развивается патологическая перестройка. Это срыв приспособительного процесса, дезадаптация. В отличие от перелома в данном случае имеет место повторно действующая травматизация - суммарное влияние часто повторяющихся ударов и толчков (металл и тот не выдерживает). Возникают особые зоны временной дезинтеграции - зоны перестройки (лоозеровские зоны), зоны просветления, которые мало известны практическим врачам и часто сопровождаются диагностическими ошибками. Чаще всего поражается скелет нижних конечностей (стопа, бедро, голень, тазовые кости).
В клинической картине различают 4 периода:
1. в течение 3-5 недель (после строевых занятий, прыжков, работы с отбойным молотком и пр) появляется болезненность, хромота, пастозность над местом перестройки. Рентгенологических изменений в этот период нет.
2. спустя 6-8 недель хромота, сильные боли, припухлость и местная отечность увеличиваются. На снимках появляется нежная периостальная реакция (обычно веретенообразной формы).
3. 8-10 недель. Сильная хромота, боли, выраженная припухлость. Рентгенологически - выраженный периостоз веретенообразной формы, в центре которого линия «перелома», проходящая через поперечник кости и плохо прослеживаемый костномозговой канал.
4. период восстановления. Хромота исчезает, припухлости нет, рентгенологически периостальная зона уменьшается, костная структура восстанавливается. Лечение - сначала покой, затем физиопроцедуры.
Дифференциальная диагностика: остегенная сакрома, остеомиелит, остеодостеома.
Типичным примером патологической перестройки является маршевая стопа (болезнь Дойчлендера, перелом новобранцев, перегруженная стопа). Обычно поражается диафиз 2-3 плюсневой кости. Клиника описана выше. Рентгеносемиотика сводится к появлению линии просветления (перелома) и муфтообразному периоститу. Общая длительность заболевания 3-4 месяца. Другие разновидности патологической перестройки.
1. Множественные лоозеровские зоны в виде треугольных насечек по переднемедиальным поверхностям больших берцовых костей (у школьников во время каникул, спортсменов при чрезмерных тренировках).
2. Лакунарные тени поднадкостнично расположенные в верхней трети большеберцовых костей.
3. Полосы остеосклероза.
4. В виде краевого дефекта
Изменения в костях при вибрации возникают под влиянием ритмически действующего пневматического и вибрирующего инструмента (горняки, шахтеры, ремонтники асфальтовых дорог, некоторые отрасли металлообрабатывающей промышленности, пианисты, машинистки). Частота и интенсивность изменений зависит от стажа работы (10-15 лет). В группу риска входят лица до 18 лет и старше 40 лет. Методы диагностики: реовазография, термография, каппиляроскопия и пр.
Основные рентгенологические признаки:
1. островки уплотнения (эностозы) могут встречаться во всех костях верхней конечности. Форма неправильная, контуры неровные, структура неравномерная.
2. кистевидные образования чаще встречаются в костях кисти (запястья) и выглядят в виде просветления размером 0,2-1,2 см округлой формы с ободком склероза вокруг.
3. остеопороз.
4. остеолиз концевых фаланг кисти.
5. деформирующий остеоартроз.
6. изменения в мягких тканях в виде параоссальных обызвествлений и окостенений.
7. деформирующий спондилез и остеохондроз.
8. остеонекрозы (чаще полулунной кости).
КОНТРАСТНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ В ЛУЧЕВОЙ ДИАГНОСТИКЕ
Получение рентгеновского изображения связано с неравномерным поглощением лучей в объекте. Чтобы последний получил изображение, он должен иметь неодинаковое строение. Отсюда, некоторые объекты, как мягкие ткани, внутренние органы на обычных снимках не видна и требуют для своей визуализации применения контрастных средств (КС).
Вскоре, после открытия рентгеновых лучей, стали развиваться идеи получения изображения различных тканей с помощью КС. Одним из первых КС , которым сопутствовал успех, были соединения йода (1896). Впоследствии широкое применение в клинической практике, нашел буроселектан (1930) для исследования печени, содержавший один атом йода. Уроселектан явился прототипом всех КС, созданных позднее для исследования мочевыделительной системы. Вскоре появился уроселектан (1931), уже содержавший две молекулы йода, что позволило улучшить контрастность изображения при хорошей переносимости его организмом. В 1953 году появился трийодированный препарат урографии, оказавшийся полезным и для ангиографии.
В современной визуализированной диагностике КС обеспечивают существенное повышение информативности рентгенологических методов исследования, РКТ, МРТ и ультразвуковой диагностике. Все КС имеют одно назначение - увеличить разницу между различными структурами в отношении их способности абсорбировать или отражать электромагнитные излучения или ультразвука. Для выполнения своей задачи КС должны достичь определенной концентрации в тканях и быть безвредными, что, к сожалению, невозможно, так как они часто приводят к нежелательным последствиям. Отсюда, поиски высокоэффективных и безвредных КС продолжаются. Актуальность проблемы возрастает с появлением новых методов (РКТ, МРТ, УЗИ).
Современные требования к КС: 1) хорошая (достаточная) контрастность изображения, т.е. диагностическая эффективность, 2) физиологическая обоснованность (органоспецифичность, выведение по пути из организма), 3) общедоступность (экономичность), 4) безвредность (отсутствие раздражений, токсических повреждений и реакций), 5) простота введения и быстрота выведения из организма.
Пути введения КС чрезвычайно разнообразны: через естественные отверстия (слезные точки, наружный слуховой проход, через рот и др.), через послеоперационные и патологические отверстия (свищевые ходы, соустья и др.), через стенки с/с и лимфатической системы (пункция, катетеризация, секция и др.), через стенки патологических полостей (кисты, абсцессы, каверны и др.), через стенки естественных полостей, органов, протоков (пункция, трепанация),введения в клетчаточные пространства (пункция).
В настоящее время все КС делятся на:
1. рентгенологические
2. МРТ - контрастные вещества
3. УЗ - контрастные вещества
4. флюоресцирующие (для маммографии).
С практической точки зрения КС целесообразно подразделить на: 1) традиционные рентгенологические и КТ- контрастные средства, а также нетрадиционные, в частности, созданные на основе сернокислого бария.
Традиционные рентгеноконтрастные средства делятся на: а) негативные (воздух, кислород, углекислый газ и др.), б) позитивные, хорошо поглощающие рентгеновские лучи. Контрастные средства этой группы ослабляют излучение в 50-1000 раз по сравнению с мягкими тканями. Позитивные КС в свою очередь делятся на растворимые в воде (йодистые препараты) и нерастворимые в воде (сульфат бария).
Йодистые контрастные средства - их переносимость больными объясняется двумя факторами: 1) осмолярностью и 2) хемотоксичностью, включая и ионное воздействие. Для снижения осмолярности был предложен: а) синтез ионных димерных КС и б) синтез неионных мономеров. Например, ионные димерные КС были гиперосмолярными (2000 м моль/л.), тогда как ионные димеры и неионные мономеры уже имели осмолярность значительно ниже (600-700 м моль/л), снизилась и их хемотоксичность. Неионный мономер «Омнипак» начал применяться с 1982 года и судьба его сложилась блестяще. Из неионных димеров «Визипак» - следующий шаг в развитии идеальных КС. Он обладает изоосмолярносггью, т.е. его осмолярность равна плазме крови (290 м моль/л). Неионные димеры больше всех КС на данном этапе развития науки и технологий соответствуют понятию «Идеальные контрастные средства».
КС для РКТ. В связи с широким распространением РКТ стали разрабатываться КС селективного контрастирования для различных органов и систем, в частности, почек, печени, так как современные водорастворимые холецистографические и урографические КС оказались недостаточными. В определенной степени требованиям КС при РКТ отвечает «Йозефанат». Это КС избирательно концентрируется в ф)тткционирующих гепатоцитах и может использоваться при опухолях и циррозах печени. Хорошие отзывы поступают и при использовании «Визипака», а также капсулированного «Йодиксанола». Все эти КС при КТ перспективны при визуализации мегастазов печени, карцином печени, гемангиом.
Как ионные, так и неионные (в меньшей степени) могут вызвать реакции и осложнения. Побочные действия йодсодержащих КС составляют серьезную проблему. По данным международной статистики, поражение почек КС остается одним из основных видов ятрогенной почечной недостаточности, составляющей около 12% госпитальной острой почечной недостаточности. Васкулярная боль при в/в введении препарата, ощущение жара во рту, горький вкус, озноб, покраснение, тошнота, рвота, боль в животе, учащение пульса, ощущение тяжести в грудной клетке - далеко неполный перечень раздражающего действия КС. Может быть остановка сердца и дыхания, в отдельных случаях наступает смерть. Отсюда, различают три степени тяжести побочных реакций и осложнений:
1) легкие реакции («горячие волны», гиперемия кожных покровов, тошнота, небольшая тахикардия). Медикаментозной терапии не требуется;
2) средняя степень (рвота, сыпь, коллапс). Назначаются с/с и противоаллергические средства;
3) тяжелые реакции (анурия, поперечный миелит, остановка дыхания и сердца). Предсказать заранее реакции невозможно. Все предложенные методы профилактики оказались неэффективными. В последнее время предлагают пробу «на кончике иглы». В ряде случаев рекомендуется премедикация, в частности преднизалоном и его производными.
В настоящее время лидерами качества среди КС являются «Омнипак» и «Ультравист», которые обладают высокой местной переносимостью, общей низкой токсичностью, минимальными гемодинамическими действиями и высоким качеством изображения. Используются при урографии, ангиографии, миелографии, при исследовании ЖКТ и др.
Рентгеноконтрастные вещества на основе сернокислого бария. Первые сообщения об использовании водной взвеси сернокислого бария в качестве КС принадлежат Р. Краузе (1912г.). Сернокислый барий хорошо поглощает рентгеновы лучи, легко смешивается в различных жидкостях, не растворяется и не образует различных соединений с секретами пищеварительного канала, легко измельчается и позволяет получать взвесь необходимой вязкости, хорошо прилипает к слизистой оболочке. На протяжении 80-ти с лишним лет совершенствуется методика приготовления водной взвеси сернокислого бария. Основные требования её сводятся к максимальной концентрации, мелкодисперстности и адгезивности. В связи с этим предложено несколько методов приготовления водной взвеси сернокислого бария:
1) Кипячение (1 кг бария подсушивают, просеивают, добавляют 800 мл воды и кипятят в течении 10-15 минут. Затем пропускают через марлю. Такая взвесь может храниться 3-4 дня);
2) Для достижения высокой дисперстности, концентрации и вязкости в настоящее время широко используют высокоскоростные смесители;
3) На вязкость и контрастность большое влияние оказывают различные стабилизирующие добавки (желатин, карбоксиметилцеллюлоза, слизь семени льна, крахмал и др.);
4) Использование ультразвуковых установок. При этом взвесь остается гомогенной и практически сульфат бария долгое время не оседает;
5) Использование патентованных отечественных и зарубежных препаратов с различными стабилизирующими веществами, вяжущими средствами, вкусовыми добавками. Среди них заслуживают внимание - баротраст, миксобар, сульфобар и др.
Эффективность двойного контрастирования повышается до 100% при использовании следующей композиции: сульфат бария - 650 г, цитрат натрия - 3,5 г, сорбит - 10,2 гр., антифосмилан -1,2 г, вода-100 г.
Взвесь сернокислого бария безвредна. Однако, при попадании в брюшную полость и в дыхательные пути возможны токсические реакции, при стенозах - развитие непроходимости.
К нетрадиционным йоднесодержащим КС относятся магнитные жидкости - ферромагнитные суспензии, которые перемещаются в органах и тканях внешним магнитным полем. В настоящее время имеется ряд композиций на основе ферритов магния, бария, никеля, меди, суспенизрованных в жидком водном носителе, содержащим крахмал, поливиниловый спирт и другие вещества с добавлением пудры металлических окислов бария, висмута и других химических веществ. Изготовлены специальные аппараты с магнитным устройством, способные управлять этими КС.
Считается, что ферромагнитные препараты могут применяться в ангиографии, бронхографии, сальпингографии, гастрографии. Пока широкого распространения этот метод в клинической практике не получил.
В последнее время среди нетрадиционных КС заслуживают внимания биодеградирующие контрастные средства. Это препараты на основе липосом (яичный лецитин, холестерин и др.), депонирующиеся избирательно в различных органах, в частности в клетках РЭС печени и селезенки (йопамидол, метризамид и др.). Синтезированы и бромированк ые липосомы для КТ, которые выделяются почками. Предложены КС на основе перфторуглеродистых и других нетрадиционных химических элементов, таких как тантал, вольфрам, молибден. К о об их практическом применении пока говорить рано.
Таким образом, в современной клинической практике используются в основном два класса рентгеновских КС - йодированные и сульфат бария.
Парамагнитные КС для МРТ. Для МРТ в настоящее время широкое распространение в качестве парамагнитного контрастного средства нашел «Магневист». Последний укорачивает время спинрешетчатой релаксации возбужденных ядер атомов, что увеличивает интенсивность сигнала и повышает контрастность изображения тканей. После в/в введения он быстро распределяется во внеклеточном пространстве. Выделяется из организма главным образом почками с помощью клубочковой фильтрации.
Область применения. Применение «Магневиста» показано при исследовании органов ЦНС, с целью обнаружения опухоли, а также для дифференциальной диагностики при подозрении на опухоль мозга, невриному слухового нерва, глиому, метастазы опухолей и др. С помощью «Магневиста» достоверно выявляют степень поражения головного и спинного мозга при рассеянном склерозе и контролируют эффективность проводимого лечения. «Магневист» используют в диагностике и дифференциальной диагностике опухолей спинного мозга, а также для выявления распространенности новообразований. «Магневист» используют и при проведении МРТ всего тела, включая исследование лицевого черепа, области шеи, грудной и брюшной полостей, молочных желез, тазовых органов, опорно-двигательного аппарата.
Для ультразвуковой диагностики в настоящее время созданы и стали доступными принципиально новые КС. Заслуживают внимания «Эховист» и «Левовост». Они представляют собой суспензию микрочастиц галактозы, содержащих пузырьки воздуха. Эти препараты позволяют, в частности, диагностировать заболевания, которые сопровождаются гемодинамическими изменениями в правых отделах сердца.
В настоящее время благодаря широкому использованию рентгеноконтрастных, парамагнитных средств и, используемых при ультразвуковом исследовании, возможности диагностики заболеваний различных органов м систем значительно расширились. Продолжаются исследования по созданию новых КС высокоэффективных и безопасных.
ОСНОВЫ МЕДИЦИНСКОЙ РАДИОЛОГИИ
Сегодня мы являемся свидетелями все ускоряющегося прогресса медицинской радиологии. В клиническую практику властно внедряются каждый год все новые методы получения изображения внутренних органов, способы лучевой терапии.
Медицинская радиология - одна из важнейших медицинских дисциплин атомного веке.. Она родилась на стыке 19-20 вв., когда человек узнал, что кроме привычного видимого нами мира, существует мир чрезвычайно малых величин, фантастических скоростей и необычных превращений. Это относительно молодая наука, дата ее рождения точно обозначена благодаря открытиям немецкого ученого В. Рентгена; (8 ноября 1895 г.) и французского ученого А. Беккереля (март 1996 г.): открытия рентгеновских лучей и явлений искусственной радиоактивности. Сообщение Беккереля определило судьбу П. Кюри и М. Складовской-Кюри (ими был выделен радий, радон, полоний). Исключительной значение для радиологии имели работы Розенфорда. Путем бомбардировки атомов азота альфа-частицами им были получены изотопы атомов кислорода, т. е. было доказано превращение одного химического элемента в другой. Это был «алхимик» 20 века, «крокодил». Им были открыты протон, нейтрон, что дало возможность нашему соотечественнику Иваненко создать теорию строения атомного ядра. В 1930 году был построен циклотрон, что позволило И. Кюри и Ф. Жолио-Кюри (1934) впервые получить радиоактивный изотоп фосфора. С этого момента началось бурное развитие радиологии. Из отечественных ученых следует отметить исследования Тарханова, Лондона, Кинбека, Неменова, внесших весомый вклад в клиническую радиологию.
Медицинская радиология - область медицины, разрабатывающая теорию и практику применения излучения в медицинских целях. Она включает в себя две основные медицинские дисциплины: лучевую диагностику (диагностическую радиологию) и лучевую терапию (радиационную терапию).
Лучевая диагностика - наука о применении излучений для исследования строения и функций нормальных и патологически измененных органов и систем человека с целью профилактики и распознавания заболеваний.
В состав лучевой диагностики входят рентгенодиагностика, радионуклидная диагностика, ультразвуковая диагностика и магнитно-резонансная визуализация. К ней также относят термографию, СВЧ-термометрию, магнитно-резонансную спектрометрию. Очень важное направление в лучевой диагностике - интервенционная радиология: выполнение лечебных вмешательств под контролем лучевых исследований.
Без радиологии сегодня не могут обойтись никакие медицинские дисциплины. Лучевые методы широко используют в анатомии, физиологии, биохимии и др.
Группировка излучений, используемых в радиологии.
Все излучения, используемые в медицинской радиологии, делят на две большие группы: неионизирующие и ионизирующие. Первые, в отличии от вторых, при взаимодействии со средой не вызывают ионизации атомов, т. е. их распада на противоположно заряженные частицы - ионы. Чтобы ответить на вопрос о природе и основных свойствах ионизирующих излучений, следует вспомнить строение атомов, т. к. ионизирующие излучение - внутриатомная (внутриядерная) энергия.
Атом состоит из ядра и электронных оболочек. Электронные оболочки - это определенный энергетический уровень, создаваемый вращающимися вокруг ядра электронами. Почти вся энергия атома заключается в его ядре - оно определяет свойства атома и его вес. Ядро состоит из нуклонов - протонов и нейтронов. Количество протонов в атоме равняется порядковому номеру химического элемента таблицы Менделеева. Сумма протонов и нейтронов обусловливает массовое число. Химические элементы, расположенные в начале таблицы Менделеева, в своем ядре имеют равное количество протонов и нейтронов. Такие ядра устойчивы. Элементы, расположенные в конце таблицы, имеют ядра, перегруженные нейтронами. Такие ядра становятся неустойчивыми и со временем распадаются. Это явление называется естественной радиоактивностью. Все химические элементы, расположенные в таблице Менделеева, начиная с № 84 (полоний), являются радиоактивными.
Под радиоактивностью понимают такое явление в природе, когда атом химического элемента распадается, превращаясь в атом другого элемента, с иными химическими свойствами и при этом в окружающую среду выделяется энергия в виде элементарных частиц и гамма-квантов.
Между нуклонами в ядре действуют колоссальные силы взаимного притяжения. Они характеризуются большой величиной и действуют на очень малом расстоянии, равному поперечнику ядра. Эти силы получили название ядерных сил, которые не подчиняются электростатическим законам. В тех случаях, когда в ядре имеется преобладание одних нуклонов над другими, ядерные силы становятся небольшими, ядро неустойчивым, и со временем распадается.
Все элементарные частицы и гамма-кванты обладают зарядом, массой и энергией. За единицу массы принята масса протона, заряда - заряд электрона.
В свою очередь элементарные частицы делятся на заряженные и незаряженные . Энергия элементарных частиц выражается в эв, Кэв, Мэв.
Чтобы получить из стабильного химического элемента радиоактивный, необходимо изменить протонно-нейтронное равновесие в ядре. Для получения искусственно радиоактивных нуклонов (изотопов) обычно используют три возможности:
1. Бомбардировка стабильных изотопов тяжелыми частицами в ускорителях (линейные ускорители, циклотроны, синхрофазотроны и проч.).
2. Использование ядерных реакторов. При этом радионуклиды образуются в качестве промежуточных продуктов распада U-235 (1-131, Cs-137, Sr-90 и др.).
3. Облучение стабильных элементов медленными нейтронами.
4. В последние время в клинических лабораториях для получения радионуклидов используют генераторы (для получения технеция - молибденовый, индия - заряженный оловом).
Известно несколько видов ядерных превращений. Наиболее распространенными являются следующие:
1. Реакция -распада (полученное вещество смещается влево на дне клеточки таблицы Менделеева).
2. Электронный распад (откуда же берется электрон, т. к. в ядре его нет? Он возникает при переходе нейтрона в протон).
3. Позитронный распад (при этом протон превращается в нейтрон).
4. Цепная реакция - наблюдается при делении ядер ура-на-235 или плутония-239 при наличии так называемой критической массы. На этом принципе основано действие атомной бомбы.
5. Синтез легких ядер - термоядерная реакция. На этом принципе основано действие водородной бомбы. Для синтеза ядер нужна большая энергия, она берется при взрыве атомной бомбы.
Радиоактивные вещества, как естественные так и искусственные, с течением времени распадаются. Это можно проследить за эманацией радия, помещенного в запаянную стеклянную трубочку. Постепенно свечение трубочки уменьшается. Распад радиоактивных веществ подчиняется определенной закономерности. Закон радиоактивного распада гласит: «Количество распадающихся атомов радиоактивного вещества за единицу времени пропорционально количеству всех атомов», т. е. в единицу времени всегда распадается определенная часть атомов. Это так называемая постоянная распада (X). Она характеризует относительную скорость распада. Абсолютная скорость распада - это количество распадов в одну секунду. Абсолютная скорость распада характеризует активность радиоактивного вещества.
Единицей активности радионуклида в системе единиц СИ является беккерель (Бк): 1 Бк = 1 ядерному превращению за 1 с. На практике еще используют внесистемную единицу кюри (Ки): 1 Ки = 3,7 * 1010 ядерных превращений за 1 с (37 млрд. распадов). Это большая активность. В медицинской практике чаще используют милли и микро Ки.
Для характеристики скорости распада пользуются периодом, в течение которого активность уменьшается вдвое (T=1/2). Период полураспада определяется в с, мин, час, годах и тысячелетиях, Период полураспада, например, Тс-99т - 6 часов, а период полураспада Ra - 1590 лет, a U-235 - 5 млрд. лет. Период полураспада и постоянная распада находятся в определенной математической зависимости: T = 0,693. Теоретически полного распада радиоактивного вещества не происходит, поэтому на практике пользуются десятью периодами полураспада, т. е. по истечении этого срока радиоактивное вещество практически полностью распалось. Самый большой период полураспада у Bi-209 -200 тыс. млрд. лет, самый короткий -
Для определения активности радиоактивного вещества используются радиометры: лабораторные, медицинские, радиографы, сканеры, гамма-камеры. Все они построены по одному и тому же принципу и состоят из детектора (воспринимающего излучения), электронного блока (ЭВМ) и регистрирующего устройства, позволяющего получать информацию в виде кривых, цифр или рисунка.
Детекторами служат ионизационные камеры, газоразрядные и сцинтилляционные счетчики, полупроводниковые кристаллы или химические системы.
Решающее значение для оценки возможного биологического действия излучения имеет характеристика его поглощения в тканях. Величина энергии, поглощенная в единице массы облучаемого вещества, называется дозой, а та же величина, отнесенная к единице времени, называется мощностью дозы излучения. Единицей поглощенной дозы в системе СИ является грей (Гр): 1 Гр = 1 Дж/кг. Поглощенную дозу определяют расчетным путем, используя таблицы, или посредством введения миниатюрных датчиков в облучаемые ткани и полости тела.
Различают экспозиционную дозу и поглощенную дозу. Поглощенная доза - это количество лучевой энергии, поглощенной в массе вещества. Экспозиционная доза - это доза, измеренная в воздухе. Единицей экспозиционной дозы является рентген (миллирентген, микрорентген). Рентген (г) - это количество лучистой энергии, поглощенной в 1 см3 воздуха при определенных условиях (при 0°С и нормальном атмосферном давлении), образующей электрический заряд равный 1 или образующей 2,08x109 пар ионов.
Методы дозиметрии:
1. Биологические (эритемная доза, эпилляционная доза и т. д.).
2. Химические (метилоранж, алмаз).
3. Фотохимические.
4. Физические (ионизационные, сцинтилляционные и др.).
По своему назначению дозиметры делятся на следующие виды:
1. Для измерения излучения в прямом пучке (конденсаторный дозиметр).
2. Дозиметры контроля и защиты (ДКЗ) - для измерения мощности доз на рабочем месте.
3. Дозиметры индивидуального контроля.
Все эти задачи удачно сочетает в себе термолюминесцентный дозиметр («Телда»). С его помощью можно измерять дозы в пределах от 10 млрд. до 105рад, т. е. он может использоваться как для контроля защиты, так и для измерения индивидуальных доз, а также доз при лучевой терапии. При этом детектор дозиметра может быть вмонтирован в браслет, кольцо, нагрудный жетон и т. д.
РАДИОНУКЛИДНЫЕ ИССЛЕДОВАНИЯ ПРИНЦИПЫ, МЕТОДЫ, ВОЗМОЖНОСТИ
С появлением искусственных радионуклидов перед врачом открылись заманчивые перспективы: вводя в организм больного радионуклиды, можно наблюдать за их местоположением с помощью радиометрических приборов. За сравнительно короткий срок радионуклидная диагностика превратилась в самостоятельную медицинскую дисциплину.
Радионуклидный метод - это способ исследования функционального и морфологического состояния органов и систем с помощью радионуклидов и меченых ими соединений, которые называются РФП. Эти индикаторы вводятся в организм, а затем с помощью различных приборов (радиометров) определяют скорость и характер перемещения и выведения их из органов и тканей. Кроме того, для радиометрии могут быть использованы кусочки тканей, кровь, выделения больного. Метод обладает высокой чувствительностью и проводится in vitro (радиоимунный анализ).
Таким образом, целью радионуклидной диагностики является распознавание заболеваний различных органов и систем с использованием радионуклидов и меченых ими соединений. Сущность метода - регистрация и измерение излучений от введенных в организм РФП или радиометрия биологических проб с помощью радиометрических приборов.
Радионуклиды отличаются от своих аналогов - стабильных изотопов - лишь физическими свойствами, т. е. способны распадаться, давая излучение. Химические свойства одинаковы, поэтому введение их в организм не влияет на течение физиологических процессов.
В настоящее время известно 106 химических элементов. Из них 81 - имеет как стабильные, так и радиоактивные изотопы. Для остальных 25 элементов известны только радиоактивные изотопы. Сегодня доказано существование около 1700 нуклидов. Число изотопов химических элементов колеблется от 3 (водород) до 29 (платина). Из них 271 нуклид стабилен, остальные - радиоактивны. Около 300 радионуклидов находят или могут найти практическое применение в различных сферах человеческой деятельности.
С помощью радионуклидов можно измерить радиоактивность тела и его частей, изучить динамику радиоактивности, распределение радиоизотопов, измерить радиоактивность биологических сред. Следовательно, можно изучать обменные процессы в организме, функции органов и систем, течение секреторных и экскреторных процессов, изучить топографию органа, определить скорость кровотока, обмен газов и др.
Радионуклиды широко используются не только в медицине, но и в самых различных областях знаний: археологии и палеонтологии, металловедении, сельском хозяйстве, ветеринарии, судмед. практике, криминалистике и пр.
Широкое применение радионуклидных методов и их высокая информативность сделали радиоактивные исследования обязательным звеном клинического обследования больных, в частности головного мозга, почек, печени, щитовидной железы и других органов.
История развития. Еще в 1927 году были попытки использования радия для изучения скорости кровотока. Однако широкое изучение вопроса использования радионуклидов в широкой практике началось в 40-е годы, когда были получены искусственные радиоактивные изотопы (1934 г. - Ирен и Ф. Жолио Кюри, Франк, Верховская). Впервые был использован Р-32 для изучения обмена в костной ткани. Но до 1950 г. внедрение методов радионуклидной диагностики в клинику тормозилось техническими причинами: не было в достаточном количестве радионуклидов, простых в обращении радиометрических приборов, эффективных методик исследования. После 1955 г. исследования: в области визуализации внутренних органов интенсивно продолжалось в плане расширения ассортимента органотропных РФП и технического перевооружения. Было организовано производство коллоидного раствора Au-198,1-131, Р-32. С 1961 г. началось производство бенгальского розового-1-131, гиппурана-1-131. К 1970 г. в основном сложились определенные традиции использования конкретных методик исследования (радиометрия, радиография, гамматопография, клиническая радиометрия in vitro. Началось бурное развитие двух новых методик: сцинтиграфии на камерах и радиоимуннологических исследований in vitro, которые сегодня составляют 80% всех радионуклидных исследований в клинике. В настоящее время гаммакамера может получить такое же широкое распространение, как и рентгенологическое исследование.
Сегодня намечена широкая программа внедрения в практику лечебных учреждений радионуклидных исследований, которая успешно реализуется. Открываются все новые лаборатории, внедряются новые РФП, методики. Так, буквально за последние годы созданы и внедрены в клиническую практику туморотропные (цитрат галлия, меченный блеомицин) и остеотропные РФП.
Принципы, методы, возможности
Принципы и сущность радионуклидной диагностики - способность радионуклидов и меченых ими соединений избирательно накапливаться в органах и тканях. Все радионуклиды и РФП можно условно разделить на 3 группы:
1. Органотропные: а) с направленной органотропностью (1-131 - щитовидная железа, бенгальский розовый-1-131 - печень и др.); б) с косвенной направленностью, т. е. временная концентрация в органе по пути выведения из организма (моча, слюна, кал и т. д.);
2. Туморотропные: а) специфические туморотропные (цитрат галлия, меченый блеомицин); б) неспецифические туморотропные (1-131 при исследовании метастазов рака щитоввдной железы в кости, бенгальский розовый-1-131 при метастазах в печень и др.);
3. Определение опухолевых маркеров в сыворотке крови in vitro (альфафетопротеин при раке печени, раковоэмбриснальный антиген - опухоли ЖКТ, хориогонадотропин - хорионэпителиома и др.).
Преимущества радионукиидной диагностики:
1. Универсальность. Все органы и системы подвластны методу радионуклидной диагностики;
2. Комплексность исследований. Примером может служить исследование щитовидкой железы (определение внутритиреоидного этапа йодного цикла, транспортноорганического, тканевого, гамматопоргафия);
3. Низкая радиотоксичность (лучевая нагрузка не превышает дозы, получаемой пациентом при одном рентгеновском снимке, а при радиоимунном исследовании лучевая нагрузка исключается полностью, что позволяет широко использовать метод в педиатрической практике;
4. Высокая степень точности исследований и возможность количественной регистрации полученных данных с использованием ЭВМ.
С точки зрения клинической значимости радионуклидные исследования условно подразделяются на 4 группы:
1. Полностью обеспечивающие постановку диагноза (заболевания щитовидной железы, поджелудочной железы, метастазы злокачественных опухолей);
2. Определить нарушение функции (почек, печени);
3. Установить топографо-анатомические особенности органа (почек, печени, щитовидной железы и т. д.);
4. Получить дополнительную информацию в комплексном исследовании (легких, сердечно-сосудистой, лимфатической систем).
Требования к РФП:
1. Безвредность (отсутствие радиотоксичности). Радиотоксичность должна быть ничтожной, что зависит от периода полураспада и полувыведения (физический и биологический период полувыведения). Совокупность периодов полураспада и полувыведения - эффективный период полувыведения. Период полураспада должен быть от нескольких минут до 30 суток. В связи с этим, радионуклиды делятся на: а) долгоживущие - десятки дней (Se-75 - 121 день, Hg-203 - 47 дней); б) среднеживущие - несколько дней (1-131-8 дней, Ga-67 - 3,3 дня); в) короткоживущие - несколько часов (Тс-99т - 6 часов, In-113m - 1,5 часа); г) ультракороткоживущие - несколько минут (С-11, N-13, О-15 - от 2 до 15 минут). Последние используются при позитронно-эмиссионной томографии (ПЭТ).
2. Физиологическая обоснованность (избирательность накопления). Однако, сегодня, благодаря достижениям физики, химии, биологии и техники, стало возможным включать радионуклиды в состав различных химических соединений, биологические свойства которых резко отличаются от радионуклида. Так, технеций может использоваться в виде полифосфата, макро- и микроагрегатов альбумина и др.
3. Возможность регистрации излучений от радионуклида, т. е. энергия гамма-квантов и бетта-частиц должна быть достаточной (от 30 до 140 Кэв).
Методы радионуклидных исследований делятся на: а) исследование живого человека; б) исследование крови, секретов, экскретов и прочих биологических проб.
К методам in vivo относятся:
1. Радиометрия (всего тела или части его) - определение активности части тела или органа. Активность регистрируется в виде цифр. Примером может служить исследование щитовидной железы, ее активности.
2. Радиография (гаммахронография) - на радиографе или гаммакамере определяется динамика радиоактивности в виде кривых (гепаторадиография, радиоренография).
3. Гамматопография (на сканере или гаммакамере) - распределение активности в органе, что позволяет судить о положении, форме, размерах, равномерности накопления препарата.
4. Радиоимунный анашз (радиоконкурентный) - в пробирке определяются гормоны, ферменты, лекарственные средства и прочее. При этом РФП вводится в пробирку, например с плазмой крови пациента. В основе метода - конкуренция между веществом меченым радионуклидом и его аналогом в пробирке за комплексирование (соединение) со специфическим антителом. Антигеном является биохимическое вещество, которое следует определить (гормон, фермент, лекарственное вещество). Для анализа необходимо иметь: 1) исследуемое вещество (гормон, фермент); 2) меченый его аналог:, меткой обычно служит 1-125 с периодом полураспада 60 дней или тритий с периодом полураспада 12 лет; 3) специфическую воспринимающую систему, являющуюся предметом «конкуренции» между искомым веществом и его меченым аналогом (антитело); 4) систему разделения, отделяющую связанное радиоактивное вещество от несвязанного (активированный уголь, ионообменные смолы и др.).
Таким образом, радиоконкурентный анализ состоит из 4 основных этапов:
1. Смешивание пробы, меченого антигена и специфической воспринимающей системы (антитело).
2. Инкубация, т. е. реакция антиген-антитело до равновесия при температуре 4 °С.
3. Разделение свободного и связанного вещества с использованием активированного угля, ионообменных смол и др.
4. Радиометрия.
Результаты сопоставляются с эталонной кривой (со стандартом). Чем больше исходного вещества (гормон, лекарственное вещество), тем меньше меченого аналога будет захвачено связывающей системой и тем большая часть его останется несвязанной.
В настоящее время разработано свыше 400 соединений различной химической природы. Метод на порядок чувствительнее лабораторных биохимических исследований. Сегодня радио-имунный анализ широко используется в эндокринологии (диагностика сахарного диабета), в онкологии (поиск раковых маркеров), в кардиологии (диагностика инфаркта миокарда), в педиатрии (при нарушении развития ребенка), в акушерстве и гинекологии (бесплодие, нарушение развития плода), в аллергологии, в токсикологии и др.
В промышленно развитых странах сейчас основной акцент делается на организацию в крупных городах центров позитронной эмиссионной томографии (ПЭТ), включающей в свой состав кроме позитронно-эмиссионного томографа, еще и малогабаритный циклотрон для производства на месте позитронно-излучающих ультракороткоживущих радионуклидов. Где нет малогабаритных циклотронов изотоп (F-18 с периодом полураспада около 2 часов) получают из своих региональных центров по производству радионуклидов или используют генераторы (Rb-82, Ga-68, Cu-62).
В настоящее время радионуклидные методы исследования используют и с профилактической целью для выявления скрыто протекающих заболеваний. Так, любая головная боль требует исследования мозга с пертехнетатом-Тс-99т. Такого рода скрининг позволяет исключить опухоль и очаги кровоизлияния. Уменьшенная почка, обнаруженная в детстве при сцинтиграфии, должна быть удалена с целью профилактики злокачественной гипертонии. Капелька крови, взятая из пяточки ребенка, позволяет установить количество гормонов щитовидной железы. При недостатке гормонов проводится заместительная терапия, что позволяет нормально развиваться ребенку, не отставая от сверстников.
Требования, предъявляемые к радионуклидным лабораториям:
Одна лаборатория - на 200-300 тысяч населения. Преимущественно ее следует размещать в терапевтических клиниках.
1. Необходимо размещать лабораторию в отдельном здании, построенном по типовому проекту с охранной санитарной зоной вокруг. На территории последней нельзя строить детские учреждения и пищеблоки.
2. Радионуклидная лаборатория должна иметь определенный набор помещений (хранилище РФП, фасовочная, генераторная, моечная, процедурная, санпропускник).
3. Предусмотрена специальная вентиляция (пятикратная смена воздуха при использовании радиоактивных газов), канализация с рядом отстойников, в которых выдерживаются отходы не менее десяти периодов полураспада.
4. Должна проводиться ежедневная влажная уборка помещений.
Книги по рентгенологии, компьютерной томографии (КТ), магнитно-резонансной томографии (МРТ)
http://meduniver.com/Medical/Book/39.html
Выбор из буфета пищевых знаков в радиологии
http://pubs.rsna.org/doi/full/10.1148/rg.226025521#
Этимология медицинских терминов, используемых в радиологии
Caput Medusae. Глава Медузы Микеланджело да Мериси, иначе известный как Караваджо (холст, масло, 1590, Galleria Uffizi, Флоренция, Италия)
Персей и Андромеда Иоахимом Втевалем (холст, масло, 1611, Музее Лувра, Париж, Франция)
Признаки в нейрорадиологии - часть 2
Рисунок в восемь в Lissencephalias
http://www.scielo.br/scielo.php?pid=S0100-39842011000200014&script=sci_arttext